

November 30, 2020

Mr. Andrew Wheeler Administrator US EPA

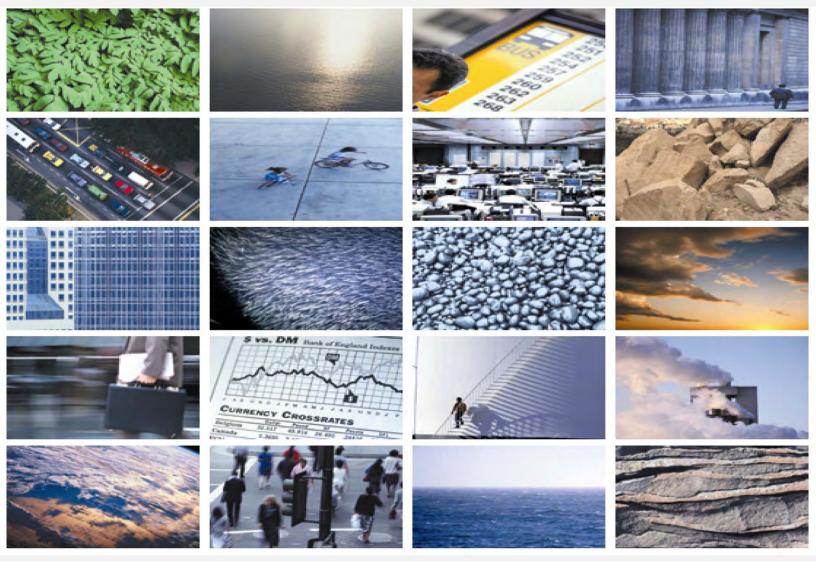
Dear Mr. Wheeler:

On August 28, 2020, the EPA finalized revisions to the CCR Rule that would require unlined CCR surface impoundments to cease receipt of waste as soon as technically feasible, but no later than April 11, 2021, unless the owner/operator can demonstrate that CCR and/or non-CCR wastestreams must continue to be managed in that CCR surface impoundment based on a lack of alternative capacity.

This Alternative Capacity Infeasibility Demonstration revises the original version submitted on November 6, 2020. This version was prepared to document and explain in greater detail why development of alternative capacity by April 11, 2021 is infeasible for the Sludge Recycle Holding (SRH) Pond, an unlined CCR surface impoundment, at the CPS Energy Calaveras Power Station located in Bexar County, Texas.

Please call me at (210) 353-3625 with any questions.

Sincerely,


Michael M. Malone, P.E., LEED Green Associate, R.E.M.

- Pala

CPS Energy Senior Manager Environmental Management

cc: Kirsten Hillyer

Frank Behan Richard Huggins

Alternative Capacity Infeasibility Demonstration

Sludge Recycle Holding (SRH) Pond CPS Energy Calaveras Power Station Bexar County, Texas

30 November 2020

Project No.: 0503422

Signature Page

30 November 2020

Alternative Capacity Infeasibility Demonstration

Sludge Recycle Holding (SRH) Pond CPS Energy Calaveras Power Station Bexar County, Texas

Charles Johnson, P. Senior Consultant

Walter Zverina Project Manager

- Dauguss, 1

Partner

Environmental Resources Management Southwest, Inc. Capitol Tower 206 East 9th Street, Suite 1700 Austin, Texas 78701

© Copyright 2020 by ERM Worldwide Group Ltd and/or its affiliates ("ERM"). All rights reserved. No part of this work may be reproduced or transmitted in any form, or by any means, without the prior written permission of ERM.

www.erm.com Version: 4.0 Project No.: 0503422 Client: CPS Energy Calaveras Power Station 30 November 2020

CONTENTS

1.	INTROD	UCTION	1										
		Demonstration Purpose and Objectives											
	1.1 Demonstration Purpose and Objectives												
2.	FACILIT	Y DESCRIPTION AND UNIT DESCRIPTION	2										
3. WORK PLAN													
J.		Alternative Capacity On-Site											
		Alternative Capacity Off-site											
		Role of SRH Pond in Continued Plant Operations											
		Narrative Discussing the Approach Selected to Obtain Alternative Capacity for CCR and/or Non-CCR Wastestreams											
	;	3.4.1 Alternative 1 – Constructing a New Wastewater Treatment Facility											
		3.4.2 Alternative 2 – Retrofitting an Existing Surface Impoundment											
		3.4.3 Alternative 3 – Converting the FGD System to Dry Handling											
		3.4.4 Alternative 4 – Constructing a New CCR Surface Impoundment											
		Detailed Schedule of the Fastest Feasible Time to Complete Measures Necessary for											
		Alternative Capacity											
		Narrative Discussion of the Schedule and Visual Timeline Representation	28										
		Narrative Discussion of the Progress Made to Obtain Alternative Capacity for the CCR and/or Non-CCR Wastestreams	33										
4.		IANCE WITH SUBPART D											
	f Figures												
Figure	2.1	Facility Location Map											
Figure	e 2.2	CCR Unit Location Map											
Figure	e 3.1	Surface Impoundment Location Map											
List o	f Exhibit	s											
Exhib	it 3.1	Off-Site Treatment Facilities											
Exhib	it 3.2	Process Flow Diagram of Current Flows to the SRH Pond											
Exhib	it 3.3	Wastewater Treatment Facility Process Flow Diagram											
Exhib	it 3.4	Wastewater Treatment Facility Conceptual Layout											
Exhib	it 3.5	Schedule for New Wastewater Treatment System											
Exhib	it 3.6	Calaveras Power Station Surface Impoundments											
Exhib	it 3.7	Flowrates to the SRH Pond											
Exhib	it 3.8	Process Flow Diagram of New CCR Surface Impoundment - Plant Drains Pond											
Exhib	it 3.9	Overall Site Plan – Plant Drains Pond and Transfer System											
Exhib	it 3.10	Plant Drains Pond Transfer Area Arrangement											
Exhib	it 3.11	Plant Drains Pond Site Plan											

Exhibit 3.12	Expected Project Durations and Cease Flow Dates
Exhibit 3.13	Schedule Durations for Primary Plant Drains Pond Project Activities
Exhibit 3.14	Plant Drains Pond System Summary Timeline
Exhibit 3.15	Plant Drains Pond System Detailed Schedule

List of Appendices

Appendix A	Owner Certification of Compliance
Appendix B	Groundwater Monitoring Well Locations Map
Appendix C	Well Construction Diagrams and Drilling Logs
Appendix D	Groundwater Flow Direction Maps
Appendix E	Constituent Concentrations Summary Tables
Appendix F	Site Hydrogeology and Cross-Sections
Appendix G	Structural Stability and Safety Factor Assessments

1. INTRODUCTION

Title 40, Code of Federal Regulations, Part 257 (40 CFR §257) Subpart D (a.k.a. the Coal Combustion Residual (CCR) Rule) was published in the Federal Register in April 2015 and became effective in October 2015. Under the CCR Rule, CPS Energy operates active surface impoundments and a landfill primarily for temporary storage and historically for disposal of fly ash and bottom ash.

On August 28, 2020, the Environmental Protection Agency (EPA) finalized revisions to the CCR Rule that would require unlined CCR surface impoundments to cease receipt of waste as soon as technically feasible, but no later than April 11, 2021, unless the owner/operator can demonstrate that CCR and/or non-CCR wastestreams must continue to be managed in that CCR surface impoundment based on a lack of alternative capacity. On behalf of CPS Energy, this Alternative Capacity Infeasibility Demonstration (Demonstration) was prepared to document, under the finalized 40 CFR §257.103(f), that development of alternative capacity by April 11, 2021 is infeasible for the Sludge Recycle Holding (SRH) Pond, an unlined CCR surface impoundment, at the CPS Energy Calaveras Power Station located in Bexar County, Texas.

1.1 Demonstration Purpose and Objectives

This Demonstration was prepared in accordance with requirements in finalized 40 CFR §257.103(f) to demonstrate that CCR and/or non-CCR flows must continue to be managed in the SRH Pond because it is infeasible to complete measures necessary to provide alternative disposal capacity on-site or off-site by April 11, 2021. CPS Energy therefore requests to keep operating the SRH Pond until September 1, 2023, which is the anticipated fastest technically feasible time in which development of alternative capacity can be completed.

1.2 Organization of the Demonstration

This Demonstration is organized into the following sections:

- Facility Description and Unit Description
- Work Plan 40 CFR §257.103(f)(1)(iv)(A) and 40 CFR §257.103(f)(1)(i)-(ii)
- Compliance with Subpart D 40 CFR §257.103(f)(1)(iv)(B) and 40 CFR §257.103(f)(1)(iii)

2. FACILITY DESCRIPTION AND UNIT DESCRIPTION

CPS Energy owns and operates the Calaveras Power Station located at 12940 U.S. Highway 181 South in San Antonio, Texas. A Facility Location Map is provided as Figure 2.1. The Calaveras Power Station consists of three power plants of which two plants (J.T. Deely and J.K. Spruce) are subject to regulation under the CCR Rule. Specifically, CPS Energy operates three CCR units at the Power Station: Evaporation Pond, Fly Ash Landfill, and the SRH Pond. Although the J.T. Deely Power Plant ceased operation at the end of December 2018 and sluiced bottom ash is no longer being received at the Bottom Ash Ponds (BAPs), the BAPs will continue to be monitored until the units have undergone closure. A CCR Unit Location Map is provided as Figure 2.2.

Groundwater in the vicinity of all the CCR units at the Calaveras Power Station has been monitored since December 2016. No statistically significant increase (SSI) of Appendix III constituents above background levels has been determined for any of the CCR units, and therefore, CPS Energy is currently in, and will continue with, a detection monitoring program.

The SRH Pond is a 3-acre surface impoundment divided into two (2) cells, each with a storage capacity of approximately 2,000,000 gallons. The SRH Pond contains a liner system, but the liner design does not meet the specific liner requirements of the CCR Rule (40 CFR §257.72), and is therefore considered unlined. The SRH Pond receives CCR and non-CCR flows from various sources within the J.K. Spruce Plant and all flows are co-mingled in the SRH Pond. Wastewater discharged from the SRH Pond is treated in the SRH Pond clarifier to reduce the total suspended solids (TSS) or it is recycled back to the J.K. Spruce Flue Gas Desulfurization (FGD) system. CCR and non-CCR solids are retained in the SRH Pond until they are dewatered and removed.

The primary operational functions of the SRH Pond include:

- Holding the various streams until they can be treated and discharged;
- Equalizing the flow to the SRH Pond clarifier;
- Removing the larger solids by settlement in the pond; and
- Providing a mechanism for the settled solids to be dewatered for beneficial use or landfill disposal.

Cessation of CCR and non-CCR flows to the SRH Pond requires alternative capacity that will, at a minimum, fulfill these primary operational functions, or the power plants designs must be modified to eliminate these flows.

3. WORK PLAN

In accordance with 40 CFR §257.103(f)(1)(iv)(A) and 40 CFR §257.103(f)(1)(i)-(ii), this section provides:

- A narrative that no alternative disposal capacity is available on-site or off-site,
- 2. A narrative that it is technically infeasible to obtain alternative capacity prior to April 11, 2021,
- 3. A narrative regarding the selected option and justification for the selected alternative capacity,
- 4. A detailed schedule and narrative discussion of the fastest technically feasible time to complete the development of the selected alternative capacity, and
- 5. A narrative discussion of the progress made to date to obtain alternative capacity.

3.1 Alternative Capacity On-Site

The cessation of CCR and non-CCR flows to the SRH Pond requires alternative capacity that, at a minimum, will replace primary operational functions, or the power plants designs must be modified to eliminate these flows. Multiple alternatives were evaluated to obtain alternative capacity on-site including:

- 1. Constructing a new wastewater treatment facility (WWTF);
- 2. Retrofitting an existing surface impoundment;
- 3. Converting the FGD system to dry handling; and
- Constructing a new CCR surface impoundment.

A summary of the four evaluated alternatives is provided below. Importantly, and as detailed in the description of each, all alternatives require several years to complete and do not provide for alternative capacity at this time, but CPS Energy is actively working towards construction of its selected alternative (Alternative 4). Details of each evaluated alternative are provided in Section 3.4 of this Demonstration.

- Alternative 1 Construction of a new WWTF is a significantly more complex alternative that requires long-lead vendor-engineered equipment and more extensive system infrastructure. Because the overall expected duration for the design and installation of a new WWTF is longer (48 months) than other alternatives, Alternative 1 was not selected.
- Alternative 2 Retrofit of an existing surface impoundment to receive the SRH Pond flow is a less complex alternative. However, of the twelve (12) surface impoundments (both CCR and non-CCR surface impoundments) at the Calaveras Power Station, none are lined in accordance with the CCR Rule. In addition, Alternative 2 was not selected for the following reasons:
 - Excluding the SRH Pond, there are nine other active surface impoundments at the Calaveras Power Station. Six of these nine surface impoundments are needed for stormwater management and release to Calaveras Lake as permitted discharges. These six surface impoundments also do not have sufficient capacity to receive wastestreams in addition to their designed stormwater capacity. Since these six surface impoundments are unavailable for added capacity, these surface impoundments are not available for retrofit as alternative capacity.
 - As for the three active surface impoundments not associated with stormwater management, the footprint of two are not large enough to handle the wastestreams managed in the SRH Pond and one (Evaporation Pond) is being closed as an unlined CCR surface impoundment. Therefore, these three surface impoundments are also not available for retrofit as alternative capacity.
 - The two inactive surface impoundments, the North and South Bottom Ash Ponds, have ceased receiving flow and will be clean closed. The schedule for release of these surface impoundments for re-development following closure is unknown and these surface

impoundments will not be available for retrofit until all closure activities are complete. In addition, the location of the North Bottom Ash Pond does not meet the minimum requirements of 40 CFR §257.60 (Placement Above the Uppermost Aquifer).

- Alternative 3 Conversion of the FGD system to dry handling eliminates eight (8) of the thirteen (13) flows that discharge to the SRH Pond and approximately 50% of the flow. Additional modifications or additions to the plant are required to address the remaining five (5) flows from the boilers and various plant sumps. Even after conversion to dry handling of FGD waste, a new WWTF or CCR surface impoundment would also be required to cease CCR and non-CCR flows to the SRH Pond. Reduction in the number of flows associated with converting the FGD system to dry handling will have nominal effect on the expected schedule for these other alternatives. The overall expected duration for conversion of the FGD system to dry handling, zero liquid discharge (ZLD) operation, is 48 months. Because this alternative does not in itself address the cessation of flow to the SRH Pond, and it has a longer overall expected duration to design and implement than other alternatives, Alternative 3 was not selected.
- Alternative 4 The selected alternative, designing and constructing a new lined surface impoundment, is the least complex alternative and it can be implemented in the shortest expected duration. Although an overall expected duration for design and construction is 44 months, since CPS Energy has already begun the planning process, the remaining duration from issue of the RFP in December 2020 through start-up and initial operation is only 33 months. This schedule allows for cessation of CCR and non-CCR flow to the SRH Pond by September 1, 2023. Constructing a new lined surface impoundment also retains the primary operational functionality of the existing SRH Pond and requires minimal modifications to the existing power plants.

3.2 Alternative Capacity Off-site

Obtaining off-site management and disposal capacity as an alternative to manage flows to the SRH Pond would include transportation of either all flows currently managed by the SRH Pond or isolating only CCR flows for transportation and disposal to an off-site facility. The only off-site wastewater treatment facility in the vicinity (approximately 20 miles away) of the Calaveras Power Station is the San Antonio Water Service (SAWS) Steven M. Clouse Water Recycling Center (Clouse WRC). No industrial wastewater treatment facilities exist in San Antonio and the surrounding area capable of treating the wastewaters currently managed by the EP (see reasons listed below). Other wastewater treatment facilities in San Antonio and the surrounding area are municipal systems owned by SAWS, the San Antonio River Authority, surrounding municipalities, or private companies and these facilities are subject to the same limitations as the SAWS Clouse WRC considered in this Demonstration. A list of the facilities considered was obtained from EPA's Facility Registry Service and is provided in Exhibit 3.1.

Exhibit 3.1 - Off-Site Treatment Facilities

Facility Name	Street	City	EPA FRS ID
BFI TESSMAN ROAD LANDFILL	7000 I-10 EAST	SAN ANTONIO	110060901653
BFI WASTE TESSMAN ROAD LANDFILL	7790 TESSMAN ROAD	SAN ANTONIO	110002371781
BRIDGEWOOD WWTP	SW CORNER DOMINION SUBDIVISION ADJACENT LEON CRK	SAN ANTONIO	110014436627
CIBOLO CREEK MUNICIPAL AUTHORITY WWTP	12423 AUTHORITY LANE	SCHERTZ	110000504990
CITY OF CASTROVILLE WWTF	818 ALSACE AVE	CASTROVILLE	110027991957
CITY OF HONDO WASTE WATER PLANT	1400 FEET EAST OF THE INTERSECTION OF FM 462 AND 3	HONDO	110070356320
CITY OF LA COSTE WWTP	11331 CR 584	LACOSTE	110009773959
CITY OF LA VERNIA WWTP	2000' E. FMR 775, APPROX 400' E SE INTEX RV ST AND	LA VERNIA	110009779784
CITY OF LYTLE WWTP	2300F SE FMR 3175 IH-35	LYTLE	110006687228
CITY OF NIXON	HIGHWAY 80 NORTH & US HWY 87	NIXON	110009778213
CITY OF SAN ANTONIO	SALADO CREEK WWTP	SAN ANTONIO	110014389704
CITY OF SCHERTZ WWFT	6700FT SW INTERSECTION OF	BEXAR COUNTY	110024412410
CITY OF SEGUIN GERONIMO CREEK WWTP	450 SEITZ RD	SEGUIN	110034285299
CITY OF SMILEY WWTP	APPROX 4200' NW OF INTERX FMR 108	SMILEY	110009746490
CITY OF STOCKDALE WWTP	OLD FLORESVILLE ROAD, CR #401	STOCKDALE	110009746301
COVEL GARDENS LANDFILL AND RECYCLING	8611 COVEL RD	SAN ANTONIO	110070377738
DISPOSAL PROPERTIES	4303 PROFIT DRIVE	SAN ANTONIO	110000464818
DOS RIOS WATER RECYCLING CENTER	3495 VALLEY RD	SAN ANTONIO	110000501840
DOS RIOS WATER RECYCLING CENTER	3495 VALLEY RD	SAN ANTONIO	110014434727
FIRST RESPONDERS ACADEMY WWTP	15775 IH 35 S	ATASCOSA	110063878184
GERONIMO CREEK WWTP	450 SEITZ RD	SEGUIN	110000501430
GONZALES WARM SPRINGS WWTF	1000' S OF THE INTX OF FM 1586 AND FM 2019	GONZALES COUNTY	110009780317
HIGHWAY 181 SOUTH WWTP	14542 CASSIANO RD	SAN ANTONIO	110020063474
HONDO WWTP	1400' E OF INTERX OF FM 462	HONDO	110039914554
LEON CREEK WATER RECYCLING CENTER	1104 MAUERMANN RD	SAN ANTONIO	110031272655
LIQUID ENVIRONMENTAL SOLUTIONS OF TEXAS	10360 W US HIGHWAY 90	SAN ANTONIO	110038485975
MARION WWTP	1400' W OF FM 465 & 1800' S OF	MARION	110009745927
MARTINEZ II CREEK WWTF	1280 FM 1516 S	SAN ANTONIO	110034410812
MARTINEZ III WWTF	.35MI S LOOP 1604, IH-10 AND LP 1604	SAN ANTONIO	110010921413
MEDINA COUNTY WCID 2 WWTF	414 CR 512	MEDINA COUNTY	110009777544
MEDIO CREEK WATER RECYC. CTR.	2231 HUNT LANE	SAN ANTONIO	110064605146
MITCHELL LAKE WWTF	10762 PLEASANTON RD	SAN ANTONIO	110006823376
NELSON GARDENS	8339 COVEL RD	SAN ANTONIO	110033180607
ODO J RIEDL	12423 AUTHORITY LANE	SCHERTZ	110070365759
PAPER RETRIEVER OF TEXAS	7510 GRISSOM RD	SAN ANTONIO	110070673293
POST OAK MUNICIPAL SOLID WASTE LANDFILL	7787 FMRD 1150	SEGUIN	110070708905
POTRANCO RANCH SUBDIVISON WWTP	APPROX 3.54 MI W OF ST HWY 211	MEDINA COUNTY	110063881009
QUAIL RUN WWTP	500' SSE OF PINE VALLEY DR	WILSON COUNTY	110024412474
SALADO CREEK WWTP	13496 BLUE WING ROAD	SAN ANTONIO	110039694195
SALATRILLO CREEK WWTF	9638 SCHAEFER RD	CONVERSE	110070356078
SALATRILLO CREEK WWTP	9638 SCHAEFER ROAD	CONVERSE	110001123640
SAN ANTONIO WATER SYSTEM	LESLIE ROAD	SAN ANTONIO	110002151536
SANTA CLARA CREEK	3930 LINNE RD	SEGUIN	110064854867
SAWS MEDIO CREEK WATER RECYCLING CENTER	2231 HUNT LN	SAN ANTONIO	110070365451
SOMERSET WWTP	4300F SE CITY HALL,3500F S	SOMERSET	110006683589
SOUTH CENTRAL WATER CO WWTF	500FT NE N LAKE HOUSTON PKWY	HOUSTON	110022417133
SOUTH REGIONAL WATER RECLAMATION PLANT	7424 TRAINER HALE RD	CITY OF SCHERTZ	110064779306
STANDARD INDUSTRIES	8189 NELSON RD	SAN ANTONIO	110020479828
UPPER MARTINEZ CREEK WWTF	ON 8203 BINZ-EMGELMAN SAN ANTONIO TX 78219	SAN ANTONIO	110070360659
WALNUT BRANCH WWTP	101 EAST KLEIN	SEGUIN	110000501449
WALNUT BRANCH WWTP	EAST KLEIN ST & S. AUSTIN ST	SEGUIN	110039946994
WOMAN HOLLERING TREATMENT PLANT	8705 GREAVES LN	SCHERTZ	110064781179

Transportation and disposal of wastewater off-site as an alternative is infeasible for the following reasons:

Management of FGD flows off-site would be subject to EPA Categorical Industrial User pretreatment standards [40 CFR 423.17] and San Antonio industrial user local limits prior to being transported offsite and introduced to a publicly owned treatment works (POTW.) This alternative would also require CPS Energy to obtain an Industrial Waste Permit from SAWS. Pretreatment of FGD flows would

Sludge Recycle Holding (SRH) Pond

include, at a minimum, sedimentation to remove TSS, including either use of a surface impoundment or large tankage similar to what would be needed for an on-site WWTF. Additional treatment may also be needed to remove dissolved metals (e.g., arsenic, mercury and selenium) to below applicable Categorical and Local standards, and the wastewater will reduce the available hydraulic capacity of the POTW for other more compatible wastestreams. The requirement to pretreat FGD flows removes any benefit of management off-site. Evaluation of options to construct a surface impoundment and WWTF is provided in more detail in Section 3.4 of this Demonstration.

- Management of wastewater off-site would require intermediate on-site containment to accept the much higher instantaneous flows which can be as high as 6,340 gallons per minute (gpm) for all flows, or 3,800 gpm for CCR flows. This would require a surface impoundment or large tankage similar to what would be needed for an on-site WWTF. As mentioned above, an evaluation of options to construct a surface impoundment and WWTF is provided in more detail in Section 3.4 of this Demonstration.
- Management of wastewater off-site would also require transportation of wastewater by tanker truck. The average daily flow to the SRH Pond is approximately 670 gpm. Even if CCR flows could be isolated from non-CCR flows to the SRH Pond, average daily CCR wastewater flows alone are 440 gpm. As an example of what it would require to transport this wastewater off-site, 440 gpm equates to one trip for a 4,000-gallon tank truck every 9 minutes or 160 trips per day; a logistically infeasible trip frequency and volume. Also, the resulting truck traffic would substantially increase 1) the risk of a traffic accident, 2) the risk of a spill or release to the environment, and 3) fuel consumption and carbon emissions. Further, it is unlikely the POTW has sufficient transportation infrastructure or staffing to accommodate the additional tanker truck traffic.
- Assuming a conceptual cost estimate of \$2,000 per tanker truck for transport and disposal of CCR flows, the conceptual monthly cost would total over \$9 million (an infeasible cost).

3.3 Role of SRH Pond in Continued Plant Operations

The J.K. Spruce Plant has a generation capacity of 1,410 MW and comprises approximately 18.3% of the CPS Energy's generation portfolio. The J.K. Spruce Plant is an essential part of the baseload capacity within the CPS Energy fleet, particularly during peak demand periods. During the Summer of 2019, the Electric Reliability Council of Texas (ERCOT) reported that they were forced to rely on demand response reserves to maintain reliability with the grid. Although reserve margins are expected to grow in coming years, the Capacity Demand and Reserves (CDR) report indicates a continuation limited reserve margin in the near term.

The SRH Pond receives all the FGD system wastewater and various process discharge streams. It also receives low volume waste (LVW) streams that include area runoff, boiler quench water and washdown water collected in plant sumps. The FGD system must be in operation for the J.K. Spruce Plant to comply with regulatory permits and air emission limits for sulfur dioxide. Wastewater must be discharged from the FGD system on a regular basis when the plant is in service. In addition, other FGD system streams are also periodically discharged to the SRH Pond during system upset conditions and to support operations and maintenance activities.

Operation of the J.K. Spruce Plant is dependent on the continued operation of the SRH Pond until alternative capacity is available. If CCR and non-CCR flows to the SRH Pond must cease on or prior to April 11, 2021 without alternative capacity available, the J.K. Spruce Plant will not be able to continue operation.

3.4 Narrative Discussing the Approach Selected to Obtain Alternative Capacity for CCR and/or Non-CCR Wastestreams

The existing SRH Pond contains a liner system, but the liner design does not meet the specific liner requirements of the CCR Rule, and is therefore considered unlined. The SRH Pond receives CCR and non-CCR flows from the operation of two coal-fired generating units with a combined capacity of more than 1,300 megawatts. Thirteen (13) flow streams discharge to the SRH Pond including CCR flows from the FGD system and non-CCR flows from the boiler and various plant sumps. All flows are co-mingled in the SRH Pond before they are treated to reduce the TSS and discharged to the plant intake canal through a permitted outfall. A process flow diagram of the SRH Pond is shown in Exhibit 3.2.

The overall flow to the SRH Pond averages between 100 and 700 gpm, but is highly variable with potential flowrates as high as 6,000 gpm. The solids content in these flows also varies dependent on plant operating conditions and maintenance activities. Some non-CCR flows, such as stormwater runoff, are independent of the plant operating status and can increase significantly in a short period of time. During typical operating conditions, the flow to the SRH Pond ranges between 200,000 and 1,000,000 gallons per day (gpd).

The primary operational functions of the SRH Pond include:

- Holding the various streams until they can be treated and discharged;
- Equalizing the flow to the SRH Pond clarifier;
- Removing the larger solids by settlement in the pond; and
- Providing a mechanism for the settled solids to be dewatered for beneficial use or landfill disposal.

The cessation of CCR and non-CCR flows to the SRH Pond requires alternative capacity that, at a minimum, will replace primary operational functions, or the power plants designs must be modified to eliminate these flows.

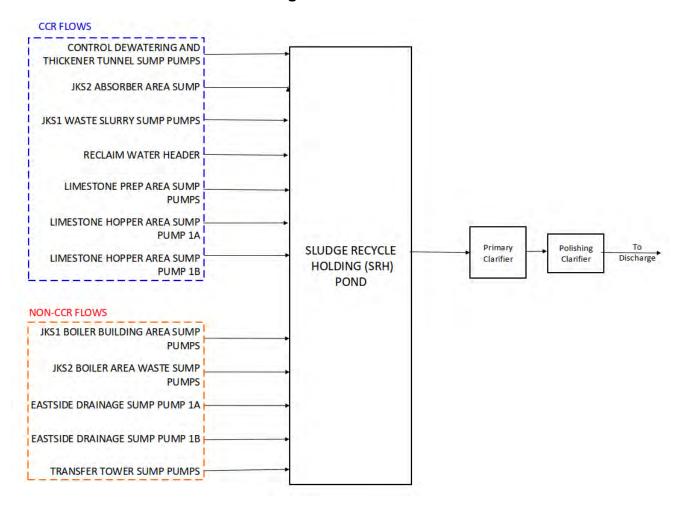


Exhibit 3.2 – Process Flow Diagram of Current Flows to the SRH Pond

Multiple alternatives evaluated by CPS Energy for providing alternative capacity for these flows included the following:

- 1. Constructing a new WWTF;
- Retrofitting an existing surface impoundment;
- Converting the FGD system to dry handling; and
- Constructing a new CCR surface impoundment.

3.4.1 Alternative 1 – Constructing a New Wastewater Treatment Facility

A new WWTF requires significant storage capacity and the capability to remove and dewater suspended solids in the wastewater. The unit operations involve primary and secondary dewatering to produce solids that can be landfilled and a discharge stream that is low in TSS. The dewatering equipment includes thickeners/clarifiers for the primary dewatering followed by filter presses or belt presses for secondary dewatering. A process flow diagram of the conceptual WWTF design is shown in Exhibit 3.3.

Due the large amount of storage capacity and the equipment layout, a large area is required for the WWTF. The closest available location is approximately 3,000 feet to north of the SRH Pond. A conceptual layout of the WWTF is shown in Exhibit 3.4. To re-direct the SRH Pond flows to the WWTF, a transfer system is also required. The transfer system for the WWTF is similar to the design for the

selected alternative, a new surface impoundment (Alternative 4). A detailed description of the conceptual transfer system is included below. To maintain high reliability, the WWTF includes two redundant trains. This design philosophy is consistent with the existing plant and included in the other alternatives that were evaluated.

The transfer system would supply one of the two thickener/clarifiers in the WWTF. Aluminum sulfate and polymer will be added to promote solids settling in the thickener/clarifier to meet the permitted TSS discharge limits. The thickener/clarifier overflow is collected in one of two treated water tanks and either returned to FGD system for make-up, returned to the thickener/clarifier for additional treatment or discharged.

The thickener/clarifier underflow has a solids concentration of approximately 30 wt% and will be stored in one of two agitated lined filter feed tanks. High pressure filter feed pumps will transfer the filter feed slurry to one of three filter presses or belt presses for secondary dewatering. Filter press and belt press technology is commonly used for solids that are difficult to dewater. The solids in the streams to the WWTF consists of coal fines and FGD solids that cannot be dewatered by the FGD system drum filters. Filter press units operate on a batch basis with a typical cycle time of three hours.

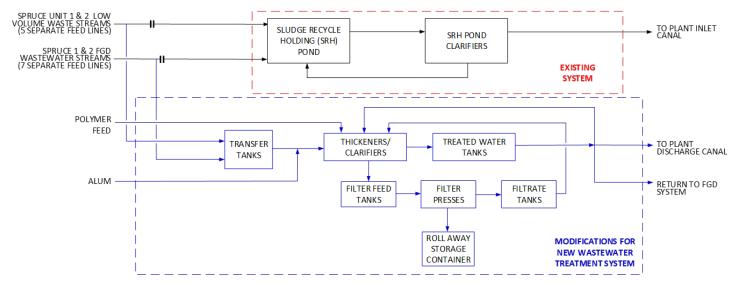


Exhibit 3.4 – Wastewater Treatment Facility Conceptual Layout

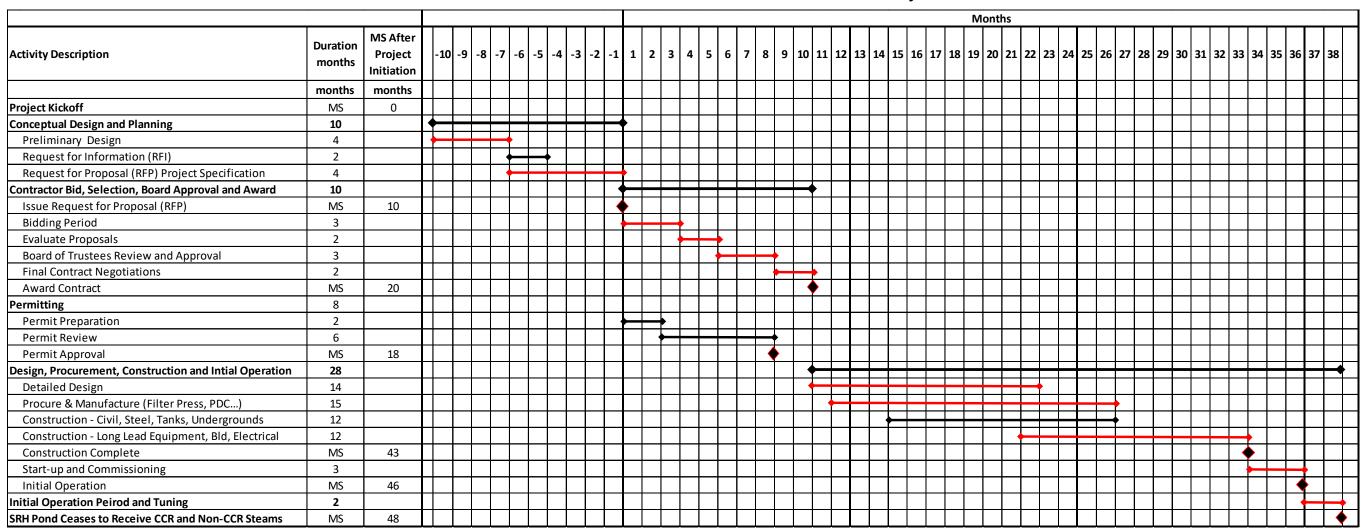
The filter press units will be located in the filter building and elevated above roll away bins. Dewatered solids will discharge directly into the bins and when the bin is full, the solids will be hauled to a landfill for disposal or supplied for beneficial use. The filtrate will be collected in one of two filtrate tanks and returned to the thickener/clarifiers.

The filter building will contain an electrical room, Digital Control System (DCS) interface, polymer feed skids, and an operator control room. The plant wide DCS will be expanded to control and monitor transfer system and WWTF operation. In addition to electrical power, the WWTF will require service water, fire water, and potable water from the main plant systems.

The overall expected duration for planning and conceptual design, contractor selection, detailed design, procurement, and construction of the WWTF is 48 months. A level 1 schedule is shown in Exhibit 3.5. Major project activities include:

- Planning and conceptual design;
- Contractor bid, selection and award;
- Detailed design, procurement and construction;
- Start-up and commissioning; and
- Initial operation.

A period of 10 months is included for the preliminary design phase. Key deliverables in this phase include a refinement of scope and schedule, collection of information required for development of detailed design, calculations and analysis and development of drawings and specifications. During this time, a request for information (RFI) package will be developed and used to qualify contractors to bid the project. A request for proposal (RFP) package will be developed during this design phase to bid the work and select the contractor that will execute the project.


The contactors scope includes detailed design, procurement, construction and start-up of the WWTF. Procurement includes engineered equipment such as the filter presses, clarifier/thickeners, agitators and pumps. It also includes shop fabricated components such as: tanks, piping spools, structural steel, building components, equipment skids and the power distribution centers (PDCs). The filter presses are expected to have a manufacturing duration of 10 months after receipt of order (ARO). Other long lead engineered equipment includes the electrical PDC and clarifier/thickener rake and drive mechanism. These are specialty vendor engineered components that typically require 8 to 9 months to manufacture. A total duration of 15 months was estimated for the engineered procurements, including time for the contractor to place the orders.

The overall duration for detailed design, procurement, construction, start-up, and initial operation is estimated to be 28 months. Construction activities such as site preparation and foundations can begin in parallel with the long lead procurement items. The critical path is linked to delivery of the long lead engineered equipment, specifically the filter press units, PDC and clarifier/thickener drive & rake mechanism. The filter building foundations and structural steel framing can be partially erected prior to delivery of the filter press units, but the completion of the building, piping electrical and control systems must be performed after the filter press units are set in place. This segment of the schedule is estimated to be 12 months. Other Balance of Plant (BOP) scope includes tie-in to the electrical distribution and DCS system. Electrical feeds from the main plant electrical distribution system will be run to both the Transfer Area and the WWTF.

Following the completion of construction, the system will undergo start-up and commissioning. This project phase will require 3 months and involves mechanical operation of all rotating equipment, instrument loop checks, meggering motors, adjustment of electrical system settings, hydrostatic testing and various other tasks to prepare the WWTF for operation. At the conclusion of the start-up and commission phase, the system will be ready for initial operation. A period of 2 months is estimated for initial operation, during which the process controls loops will be tuned and setpoints adjusted. The operation of the equipment will be assessed to confirm that it is operating as designed and meeting performance. At the completion of initial operation period, the flow to SRH Pond will cease and be redirected to the new Plant Drains Pond.

ALTERNATIVE CAPACITY INFEASIBILITY DEMONSTRATION
Sludge Recycle Holding (SRH) Pond

Exhibit 3.5 – Schedule for New Wastewater Treatment Facility

Notes:

1. Critical path activities are shown in red.

3.4.2 Alternative 2 – Retrofitting an Existing Surface Impoundment

All the existing surface impoundments at the Calaveras Power Station have a liner system; however, none of these systems meet the specific liner requirements in the CCR Rule (40 CFR §257.72) and are therefore classified as unlined. All surface impoundments (including CCR and non-CCR surface impoundments) at the Calaveras Power Station are listed in Exhibit 3.6. A Surface Impoundment Location Map is provided as Figure 3.1.

Exhibit 3.6 - Calaveras Power Station Surface Impoundments

Name	Description	Storage Capacity (MM gallons)	Liner	Status
Pond #1	Diked Oil Storage Area	0.2	Unlined	Active
Pond #2	Coal Pile Runoff Pond	32.6	Unlined	Active
Pond #3	North Bottom Ash Pond	20.5	Unlined	Inactive
Pond #4	South Bottom Ash Pond	22.5	Unlined	Inactive
Pond #5	Stormwater (Southwest Runoff Pond 3)	1.7	Unlined	Active
Pond #6	Stormwater (CRP Runoff Pond 1)	5.9	Unlined	Active
Pond #7	SRH Pond	4.0	Unlined	Active
Pond #8	Stormwater (CRP Runoff Pond 2)	2.7	Unlined	Active
Pond #9	Stormwater Runoff (Fly Ash) Pond	9.7	Unlined	Active
Pond #10	Evaporation Pond	5.1	Unlined	Active
Pond #11	Clarifier Sludge Recycling Pond	0.8	Unlined	Active
Pond #12	Stormwater (Coal conveyor area temporary holding pond)	1.1	Unlined	Active

In addition, Alternative 2 was not selected for the following reasons:

- Excluding the SRH Pond, there are nine other active surface impoundments (including CCR and non-CCR surface impoundments) at the Calaveras Power Station. Six of these nine surface impoundments are needed for stormwater management and release to Calaveras Lake as permitted discharges. These six surface impoundments also do not have sufficient capacity to receive wastestreams in addition to their designed stormwater capacity. Since these six surface impoundments are unavailable for added capacity, these surface impoundments are not available for retrofit as alternative capacity.
- As for the three active surface impoundments not associated with stormwater management, the footprint of two are not large enough to handle the wastestreams managed in the SRH Pond and one (Evaporation Pond) is being closed as an unlined CCR surface impoundment. Therefore, these three surface impoundments are also not available for retrofit as alternative capacity.
- The two inactive surface impoundments, the North and South Bottom Ash Ponds, have ceased receiving flow and will be clean closed. The schedule for release of these surface impoundments for re-development following closure is unknown and these surface impoundments will not be available for retrofit until all closure activities are complete. In addition, the location of the North Bottom Ash

Pond does not meet the minimum requirements of 40 CFR §257.60 (Placement Above the Uppermost Aquifer).

3.4.3 Alternative 3 – Converting the FGD System to Dry Handling

The FGD system wastewater purge and process flows comprise eight (8) of the thirteen (13) flows that discharge to the SRH Pond and average 50% of the flow. The remaining five (5) flows are comprised of the boilers quench water, wash down water, and stormwater runoff from various plant sumps. A summary of the instantaneous and average flowrates of the flows to the SRH Pond is shown in Exhibit 3.7.

Exhibit 3.7 – Flowrates to the SRH Pond

Item	Flow Description	Instantaneous Flowrate (gpm)	Average Flowrate (gpd)
Boiler an	nd Plant Sumps		
1	Transfer Tower Sump	250	19,000
2	Eastside Drainage Sump	400	8,600
3	Eastside Drainage Sump	400	8,600
4	Unit 1 Boiler Building Area Sump	200	40,000
5	Unit 2 Boiler Area Waste Sump	1,300	253,000
	Subtotal Boiler and Plant	2,550	330,000
FGD Sys	tem		
1	Limestone Hopper Area Sump	400	5,800
2	Limestone Hopper Area Sump	400	5,800
3	Limestone Prep Area Sump	200	35,000
4	FGD system Reclaim Water	600	144,000
5	Unit 2 Absorber Area Sump	650	68,000
6	Unit 1 Absorber Waste Slurry Sump	625	259,000
7	Thickener Tunnel Sump	400	29,000
8	Control/Dewatering Building Sump	750	86,000
	Subtotal FGD System	4,025	633,000
TOTAL		6,575	963,000

Conversion of the FGD system to dry handling will reduce the number streams that discharge to SRH Pond; but does not address these other plant flows. Additional modifications or alternative capacity is required to address balance of the flows to the SRH Pond. Installation of a WWTF, retrofit of an existing surface impoundment, or a new lined surface impoundment would also be required to cease the CCR and non-CCR flows to the SRH Pond. Conversion of the FGD system to dry handling will reduce the number

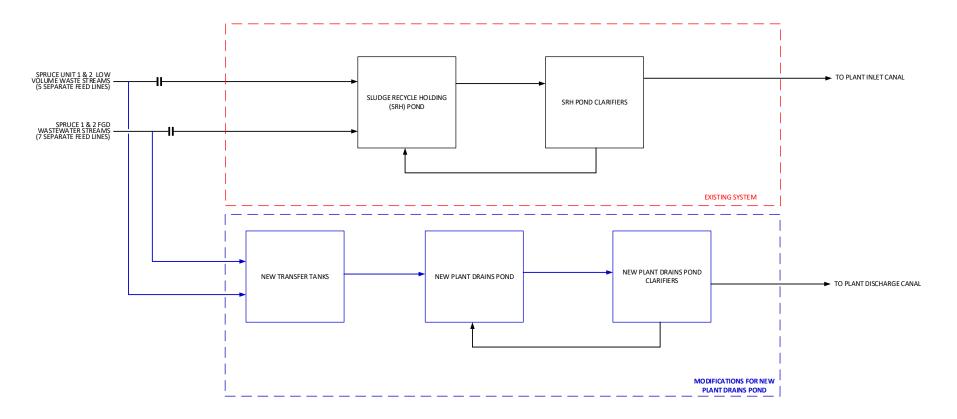
of flows and average flow to the SRH Pond, but it does not address all the flows and is therefore a partial step toward ceasing flow to the SRH Pond.

In the longer term and to comply with the Effluent Limitations Guidelines (ELGs) as defined in 40 CFR Part 423 of the Federal Register, the FGD system is expected to be converted to zero liquid discharge (ZLD) operation in the future. The conversion scope includes the addition of FGD system wastewater evaporation ponds and decant/dewatering basins. The overall expected duration of the ZLD conversion project is 48 months with an anticipated completion of December 31, 2028, the compliance date under the Voluntary Incentive Program (VIP) of the ELG Rule finalized on October 13, 2020.

3.4.4 Alternative 4 – Constructing a New CCR Surface Impoundment

The selected alternative, designing and constructing a new lined surface impoundment, similar in design to the existing SRH Pond, is the least complex alternative and it can be implemented in the shortest duration. Although an overall expected duration for design and construction is 44 months, since CPS Energy has already begun the planning process, the remaining duration from issue of the RFP in December 2020 through start-up and initial operation is only 33 months.

For this alternative, the flows that currently discharge to the SRH Pond will be transferred to a new 3-acre surface impoundment, the Plant Drains Pond. The nonhazardous wastewater will be received by the Pond, treated to reduce the TSS and then recycled to the FGD system or discharged through a permitted outfall. A process flow diagram of this alternative is shown in Exhibit 3.8.


The Plant Drains Pond will be located approximately 3,000 feet to the north of the SRH Pond and within the boundaries of the Calaveras Power Station as shown in Exhibit 3.9. This location was selected based on geotechnical and hydrogeological information and it is the closest available area for the surface impoundment. Due to the distance from the SRH Pond to the new Plant Drains Pond, a Transfer System is required.

Temporary storage tanks were evaluated for the period while the new surface impoundment is being planned and constructed. The SRH Pond has a hydraulic retention capacity of 2,000,000 gallons. Temporary tanks are available in a range of capacities from 21,000 gallon frac tanks to modular tanks of 1,000,000 gallons and larger. The maximum height of a modular tanks is about 12 feet and therefore they require a large flat graded area. For example, a typical modular tank with a capacity of 380,000 gallons is 73 feet in diameter by 10 feet tall. Modular tanks may be constructed with a bolted steel frame and geosynthetic membrane liner. To replace the hydraulic capacity of the SRH Pond, 100 frac tanks or five modular tanks (380,000 gallons each) would be required. The number and size of the temporary tanks that could be located near the SRH Pond is limited. Locating temporary tanks remotely is not feasible due the 13 different streams discharging to the SRH Pond and the hydraulics of these pumping systems.

Due to their small capacity, frac tanks would quickly fill with solids and are not a viable option. The geosynthetic membrane used for the modular tanks is susceptible to mechanical damage. Equipment used to remove the solid, such as an excavator, would likely rupture the membrane liner. Damage to the temporary tank liner during solids removal presents the environmental risk of uncontrolled wastewater discharge. The wastewater streams contain 0 to 50% solids with average flowrates ranging from 0 to 700 gpm. Under typical operating conditions, a 380,000 gallon modular tank would be full of solids in 1 to 2 months. Solids removed from the tank would need to be placed in a new containment/processing area for decanting, drying and then loading in trucks for transport to the landfill. This new infrastructure would also have to be designed and installed prior to operation of any temporary tanks.

Due to the limited area available for installation, requirements for dewatering the solids for landfill and challenges and risk associated with solids removal, temporary storage tanks are technically not a feasible option.

Exhibit 3.8 - Process Flow Diagram of New CCR Surface Impoundment - Plant Drains Pond

NORTH AND SOUTH ASH PONDS (INACTIVE)

Exhibit 3.9 – Overall Site Plan – Plant Drains Pond and Transfer System

The Transfer System design includes:

- Two 100% capacity Transfer Tanks;
- Three 50% capacity Transfer Pumps;
- Four transfer lines; and
- One area runoff collection sump with two sump pumps.

An arrangement of the Transfer Area is shown in Exhibit 3.10.

Exhibit 3.10 – Plant Drains Pond Transfer Area Arrangement

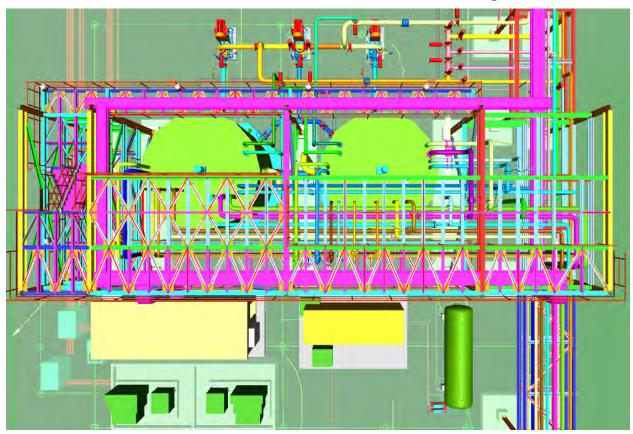
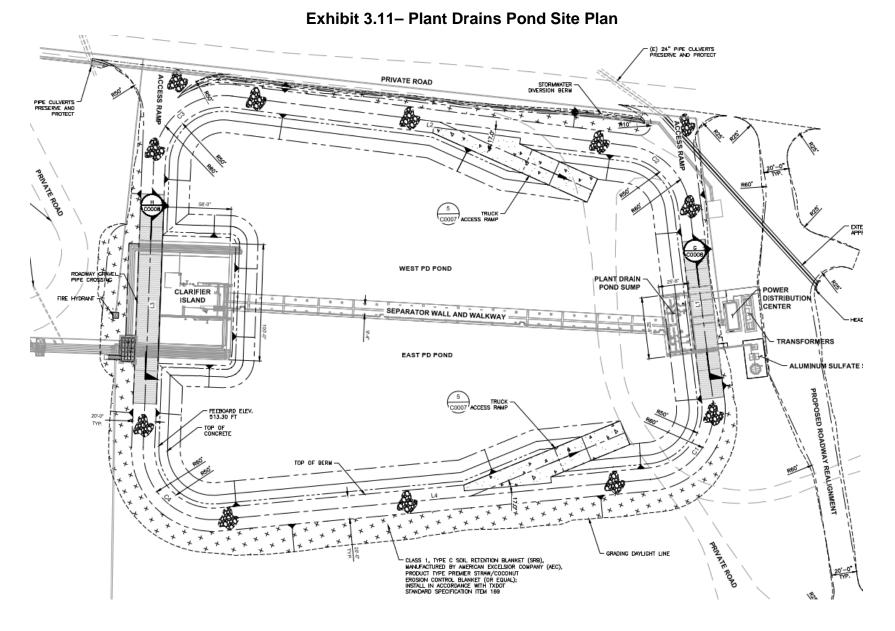



Exhibit 3.10 (continued) - Plant Drains Pond Transfer Area Arrangement

The Transfer Pumps will be designed with variable frequency drives to accommodate the wide flow range. Four dual wall lines, one larger diameter and two mid-sized diameter, and one smaller diameter will transfer wastewater to the Plant Drains Pond. An area sump will collect fluid drained from the transfer lines, washdown and area runoff and return it to the Transfer Tanks.

The Plant Drains Pond will retain key operational features of the existing SRH pond including a separator wall, sump to collect supernatant, and a clarifier to reduce the TSS in the water prior to discharge through a permitted outfall. A preliminary site plan drawing of the Plant Drains Pond is shown in Exhibit 3.11.

The Plant Drains Pond will be constructed as a single surface impoundment with an east and west cell. A manually operated gate in the separator wall will be closed during normal operation, but can be opened. One cell can be isolated, drained and the solids removed while the other cell is in operation. The overall storage capacity of the Plant Drains Pond is approximately 14 acre-feet, 7 acre-feet per cell.

The Plant Drains Pond design will comply with the criteria as stated in the CCR Rule (40 CFR § 257.72) and will include a composite liner. The upper component will consist of a 60-mil thick high density polyethene (HDPE) geomembrane liner. The lower component will consist of a geosynthetic clay liner (GCL) with a hydraulic conductivity that meets the standards required for CCR compliance. The HDPE geomembrane will be installed in direct and uniform contact with the lower GCL liner. In addition to the composite liner, the pond design will include the following layers:

- Re-enforced concrete (exposed protective layer)
- Compacted fill (protective layer)
- Non-woven geotextile (protective layer)
- HDPE geomembrane liner (upper liner component)
- Geosynthetic clay liner (lower liner component)
- Non-woven geotextile (cushion layer)
- Prepared subgrade (scarified, proof-rolled, and compacted)

The reinforced concrete top layer will cover the bottom of the pond and extend approximately 3 feet up the sidewalls. It will be designed to protect the geomembrane liner during removal of solids from the pond. The concrete layer will include the access ramps in each cell the pond. Above the concrete layer, the geomembrane liner will be covered with soil cement or similar aggregate material to protect this area from potential damage. Pond embankments will have a 3.5:1 slope and a width of 20 feet at the crown. The crown will have a radius of not less than 50 feet to facilitate vehicle access for operation, maintenance and the removal of solids. Exterior embankments of the pond will be hydroseeded.

Two (2) new lamella plate clarifiers will be installed to reduce the TSS in the Plant Drains Pond discharge stream. The clarifiers will be designed to operate in parallel or series dependent. A coagulant and polymer will be added to the clarifier feed stream to promote solids settling and meet the TSS effluent limitations for this discharge.

3.4.5 Summary of Alternatives Evaluated and Selected Alternative

A summary of the four evaluated alternatives is provided below. A summary of the overall expected project durations for CCR and non-CCR flows to the SRH Pond for each evaluated alternative is shown in Exhibit 3.12.

Exhibit 3.12 - Overall Expected Project Durations

Alternative	Description	Overall Expected Project Duration (months)
1	Constructing a Wastewater Treatment Facility	48
2	Retrofitting an Existing Surface Impoundment	-
3	Converting the FGD System Dry Handling	48
4	Constructing a new CCR Surface Impoundment	44

- Alternative 1 Construction of a new WWTF is a significantly more complex alternative that requires long-lead vendor-engineered equipment and more extensive system infrastructure. Because the overall expected duration for the design and installation of a new WWTF is longer (48 months) than other alternatives, Alternative 1 was not selected.
- Alternative 2 Retrofit of an existing surface impoundment to receive the SRH Pond flow is a less complex alternative. However, of the twelve (12) surface impoundments (both CCR and non-CCR surface impoundments) at the Calaveras Power Station, none are lined in accordance with the CCR Rule. In addition, Alternative 2 was not selected for the following reasons:
 - Excluding the SRH Pond, there are nine other active surface impoundments (including CCR and non-CCR surface impoundments) at the Calaveras Power Station. Six of these nine surface impoundments are needed for stormwater management and release to Calaveras Lake as permitted discharges. These six surface impoundments also do not have sufficient capacity to receive wastestreams in addition to their designed stormwater capacity. Since these six surface impoundments are unavailable for added capacity, these surface impoundments are not available for retrofit as alternative capacity.
 - As for the three active surface impoundments not associated with stormwater management, the footprint of two are not large enough to handle the wastestreams managed in the SRH Pond and one (Evaporation Pond) is being closed as an unlined CCR surface impoundment. Therefore, these three surface impoundments are also not available for retrofit as alternative capacity.
 - The two inactive surface impoundments, the North and South Bottom Ash Ponds, have ceased receiving flow and will be clean closed. The schedule for release of these surface impoundments for re-development following closure is unknown and these surface impoundments will not be available for retrofit until all closure activities are complete. In addition, the location of the North Bottom Ash Pond does not meet the minimum requirements of 40 CFR §257.60 (Placement Above the Uppermost Aquifer).
- Alternative 3 Conversion of the FGD system to dry handling eliminates eight (8) of the thirteen (13) flows that discharge to the SRH Pond and approximately 50% of the flow. Additional modifications or additions to the plant are required to address the remaining five (5) flows from the boilers and various plant sumps. Even with the conversion to dry handling of FGD waste, a new WWTF or CCR surface impoundment would also be required to cease CCR and non-CCR flows to the SRH Pond. Reduction in the number of flows associated with converting the FGD system to dry handling will have nominal effect on the expected schedule for these alternatives. The overall expected duration for conversion of the FGD system to dry handling, zero liquid discharge (ZLD) operation, is 48 months. Because this alternative does not in itself address the cessation of flow to the SRH Pond, and it has a longer overall expected duration to design and implement than other alternatives, Alternative 3 was not selected.
- Alternative 4 The selected alternative, designing and constructing a new lined surface impoundment, is the least complex alternative and it can be implemented in the shortest expected duration. Although an overall expected duration for design and construction is 44 months, since CPS Energy has already begun the planning process, the remaining duration from issue of the RFP in December 2020 through start-up and initial operation is only 33 months. This schedule allows for cessation of CCR and non-CCR flow to the SRH Pond by September 1, 2023. Constructing a new lined surface impoundment also retains the primary operational functionality of the existing SRH Pond and requires minimal modifications to the existing power plants.

3.5 Detailed Schedule of the Fastest Feasible Time to Complete Measures Necessary for Alternative Capacity

As indicated above, since CPS Energy has already begun the planning process, the remaining duration from issue of the RFP in December 2020 through start-up and initial operation is only 33 months. The remaining major project activities and their expected durations are summarized in Exhibit 3.13. CPS Energy is currently in Phase 1 identified in Exhibit 3.13.

Exhibit 3.13 – Expected Durations for Remaining Project Activities

Phase	Remaining Major Project Activities	Expected Durations (months)
1	Contractor Bid, Selection and Award	9
2A	Procurement and Manufacture of Engineered Equipment	14
2B	Final Detailed Design	14
2C	Construction	17
3	Start-up and Commissioning	3
4	Initial Operation and Tuning	2
	Total Project Duration from Issue of RFP	33

Note: Phase 2 consists of simultaneous tasks associated with Procurement, Detailed Design, and Construction.

Phase 1. Contractor Bid, Selection and Award

In the bidding phase, potential contractors will be issued a RFP in December 2020 for the procurement and construction project. The bid, selection and award phase includes the following tasks:

- Contractor Bid Period 8 weeks
 - A duration of 8 weeks is planned for the bidders to prepare their proposals. A bidder meeting will be scheduled shortly following issue of the Request for Proposal. The meeting may be held at the site during which the bidders can walkdown the project area and present their questions. The bidders may also formally submit questions throughout the bid cycle.
 - The project scope includes vendor engineered procurements, shop fabricated components, construction, start-up and commissioning. During the bid period, bidders will obtain vendor proposals for the major engineered equipment. Engineered equipment from nine separate vendors has been identified in the Work Plan. The construction scope includes civil earthworks, structural, mechanical, electrical, instrumentations and control system modifications. This broad scope may require some bidders to engage subcontractors or partners to execute this work. This type of arrangement typically requires a longer period of time for the bidders to prepare a response due to these formalized agreements.
- Bid Evaluation and Management Review 8 weeks Proposals received by the submittal date will be evaluated. The initial review involves an assessment to confirm the proposals are complete and meet the minimum requirements of the RFP. Proposals submitted will then be evaluated versus the specifications and preliminary design documents. This involves a detailed assessment of the proposed equipment, material quantities,

staffing and schedule. Included is a review of the proposed means and methods and any alternates that may improve the design or reduce cost. Other criteria such as experience performing similar work, safety record and proposed project staffing are also evaluated. The duration of the initial evaluation of the bids is 4 - 6 weeks and is dependent on the quality of the proposals. During this process, bidders may be requested to provide additional information or clarify their offering.

The preliminary evaluation and a preliminary ranking of the bidders will be issued to CPS Energy management for review. A period of 2 to 4 weeks is planned for management review and approval to move forward with a recommendation to the Board of Trustees. The overall evaluation period from receipt of proposals to recommendation to the Board is 8 weeks.

Contract Negotiation – 6 to 8 weeks

Prior to CPS Energy Board of Trustees approval, the negotiations with the recommended bidder(s) will be initiated. During this period, the bidders will be requested to address any clarifications and exceptions, respond to any outstanding questions and finalize the project terms and conditions. Negotiations require legal review and management approval. A project of this size typically requires multiple meetings over a period of 6 to 8 weeks to address all technical and commercial items.

CPS Energy Board Review and Approval – 8 weeks

At the end of the negotiation period, the recommendation will be presented to the CPS Energy Board of Trustees. CPS Energy is governed by a Board comprised of citizens representing each quadrant of the city and the San Antonio mayor. The Board meets monthly and the agenda is set 1 month prior to each meeting. As a result, a minimum of 2 months is required for Board review and approval.

■ Contract Award – 2 to 4 weeks

Following Board approval, CPS Energy Procurement will enter into a formal contract agreement with the selected vendor. A period of 2 to 4 weeks is planned for this procurement process.

Phase 2A. Engineered Equipment Procurement and Manufacture

The contactor's scope includes procurement of all vendor engineered equipment and shop fabricated components. Vendor engineered equipment includes, but is not limited to, pumps, mixers, clarifiers and the emergency diesel generator. It also includes shop fabricated engineered components such as the power distribution centers (PDC) and clarifier polymer addition system. Contractor shop fabricated components include structural and support steel, rubber lined carbon steel pipe, and knockdown panels for field erected tanks. The overall duration of procurement and manufacture is 14 months. The schedule for the primary items is as follows:

Vendor Engineered Equipment

To support the accelerated project schedule, some engineered equipment will be procured immediately following contractor award. Vendor supplied information, such as foundation loads, connection details, circuit diagrams and electrical loads, is required to complete the detailed design. Engineered equipment that is long lead, such as the clarifier and PDC, will also be prioritized for early procurement.

This phase consists of a period of 2 months for vendor bidding, bid evaluation, and contract negotiation and award for each piece of engineered equipment prior to beginning vendor engineering and manufacturing. The schedule durations for vendor engineering, manufacture and delivery in the schedule are based on preliminary quotes and discussions during the initial design phase. The overall procurement and manufacturing duration is approximately 14 months. The PDC and emergency generator have long lead times and are on the critical path in the schedule. Final

vendor design of the PDC is dependent on design information provided by other equipment vendors, such as pumps and agitators.

The following is a summary of the primary vendor engineered equipment procurements with the critical path and early procurement items noted:

- 1. Pumps Horizontal & Submergible Slurry Pumps early procurement
- 2. Agitators/Mixers early procurement
- 3. Clarifier Lamella early procurement
- 4. Clarifier Flocculant System and Enclosure early procurement
- 5. Electrical Power Distribution Center critical path, final release dependent on receipt of information from early procurement equipment vendors
- 6. Emergency Diesel Generator critical path, early procurement
- 7. Distributed Control System Expansion
- 8. Automated Valves isolation and control
- 9. Instruments flow, pressure and temperature

Fabricated Components

The contractor will procure shop fabricated components that will be field erected. Two months have been allocated for contractor bidding, bid evaluations, and contract award. The field erected tanks are also early procurements to support final detail design of the foundations. The tank vendor develops the detailed design of these tanks and supplies shop fabricated panels to the field where they are assembled. Following construction, the tanks will be lined with a vinyl ester flake glass organic liner. Other shop fabricated components include structural and access steel and rubber lined piping spools. Structural and access steel in the clarifier area will be released later following the receipt of vendor information for the clarifier.

- 1. Tanks large field erected knockdown tanks early procurement
- 2. Tanks -small shop fabricated tanks
- 3. Structural and Access Steel general
- 4. Structural and Access Steel clarifier area
- Shop Fabricated Piping Spools

Phase 2B. Final Detailed Design

Completion of the final detailed design is dependent on the receipt of final information from the engineered equipment vendors. Preliminary information from the suppliers was used for development of the initial design. More detailed information for the equipment and components is required to develop the Issue for Construction (IFC) packages released to the contractor.

Three or more IFC packages will be issued to the construction contractor in stages as follows:

- 1. Civil Earthworks pond design
- 2. Structural & Mechanical
- 3. Electrical, Instrumentation and Controls

The civil earthworks design will be substantially complete at contact award and the IFC package will be issued first. The structural and mechanical will follow after receipt of equipment vendor information. The

structural and mechanical IFC package may be issued by area based on the schedule for receipt of equipment vendor information. Electrical, instrumentation and controls is the final IFC package to be issued and may also be issued by area dependent on the schedule for receipt of equipment vendor information. The overall duration for final detailed design is 14 months; however, multiple IFC packages issued to the contractor to allow construction to proceed with the shortest feasible schedule.

Phase 2C. Construction

Civil construction of the Plant Drains Pond is expected to require 12 months. The site for the Plant Drains Pond is clear and relatively free of obstructions. An existing private gravel roadway to the north will require relocation and various culverts will need to be extended or added to divert stormwater runoff. The pond design includes a reinforced concrete protective layer, access ramps, division wall, sump and clarifier island. Deep foundations are required at the clarifier island. These additional pond features extend the duration for the civil construction; however, this work can be initiated early in construction and the Plant Drains Pond is not on the critical path.

Following the civil work, the mechanical, structural and controls/electrical work in the pond area will commence. Equipment in the pond area includes clarifiers, pumps, polymer skid & enclosure and the PDC. After equipment is set, support and access steel will be installed followed by the piping and electrical and control cables and components. The clarifiers and PDC's are both long lead components located in this area.

Construction in the Transfer Area is expected to require 12 months. Work in this area may start following site preparation in the Plant Drains Pond area. Construction in the Transfer Area will require demolition and relocation of existing overhead utilities and buried electrical conduit. Tie-in to the existing process lines and utilities will require coordination with plant operations. This activity can be done in parallel with construction of the Plant Drains Pond and installation of the associated equipment in the pond area. Predecessors for this activity include procurement and manufacture of equipment and completion of final detailed design. Long lead procurements in this area are the PDC and emergency diesel generator. These items have an expected manufacturing duration of 8 to 9 months, which will be completed in parallel with the transfer area site prep, demolition and existing process tie-ins. A duration of 3 to 4 months is planned for installation of the PDC, transformers, generator, and electrical and controls cabling.

Piping will be routed from the transfer area to the new Plant Drains Pond. Most of the pipe will be buried and with an overland route that crosses 2 secondary plant roadways, 2 stormwater ditches, and the plant circulation water lines. The plant circulating water lines are critical infrastructure and will require additional provisions to address this risk. The durations for installation of the below ground piping is based on these features.

The Balance of Plant (BOP) scope includes tie-in to the main plant electrical distribution and distributed controls systems (DCS). New redundant electric feeds will supply the Plant Drains Pond and Transfer Area. New buried duct bank will be installed to each of these areas.

Other tie-ins with the main plant are potable water, service water, instrument air and fire protection water. As with the process tie-ins, this work must be planned and coordinated with plant operations and may be work that must be performed during a plant outage. These activities will occur in parallel with the construction in the transfer area after all Issue for Construction Packages are completed.

Phase 3. Start-up and Commissioning

Following completion of construction, the project will enter the start-up and commissioning phase. This phase is a total of 3 months and involves pre-operational testing and checkout of components, subsystems and systems. Checkout encompasses all mechanical, electrical, instrumentation and control components followed by functional testing of the system. This activity is performed in series beginning with component checks, followed by component operation, subsystem function checks and finally overall system checkout. Construction Completion Turnover (CCT) packages will be developed for each system/subsystem. The CCT package assists in the orderly transfer from construction to start-up and then to initial operation. The following is a summary of primary start-up and commissioning tasks:

- Mechanical Equipment, Piping and Valves There are 19 component items associated with the mechanical equipment and valve checkout. Key items include: tank and vessel inspections, equipment lubrication, alignment, torque settings and clearance adjustments, piping system and insulation checks, pipe support and expansion joint checks, hydrostatic testing, line flushing, equipment run-in, vibration check and automated valve operation.
- Structural and Access Steel There are 5 component items associated with the structural and access steel. Key items include bolted connection inspection, stairs, ladders and access inspection, bolted connection torque record and structural completion certification
- Electrical Equipment, Cabling and Grounding There are 36 component items associated with the electrical distribution system and equipment checkout. Key items include: motor megger testing, motor run-in, equipment insulation test record verification, transformer insulation and voltage testing, switchgear control settings, relay settings and testing, cable testing (Hipot), ground grid integrity, heat tracing energization, area lighting and HVAC, diesel generator check and transfer, uninterruptable power system check, current and potential transformer test records, circuit breaker and motor control center (MCC) testing.
- Instrumentation and Controls There are 12 component items associated with the instrument and controls system component checkout. Key items include: control valve calibration and limits, instrument calibration, loop checks, device functional testing, digital loop tests, instrument air header flush and pressure adjustments.
- Control System Functional Testing Follow check out and acceptance of the system components, functional testing will be performed to verify the system control logic is performing as designed. Functional checks involve operation of the system on water to verify sequences for start-up, shut down, transfer between trains and operation over the full range of low, average and high flow conditions. Functional checks also include abnormal shutdown, pump trip and component trip/failure. Functional checks are performed from a temporary / start-up human machine interface (HMI) console prior to integration with the plant distributed control system (DCS).

Prior to initial operation of the Plant Drains Pond, the Engineer of Record will submit construction test records, sealed design information and a certification of the design to the Texas Commission on Environmental Quality (TCEQ). TCEQ approval of the final construction is required prior to discharging wastewater into the new surface impoundment. This is a parallel activity to be executed along with final construction. It is not on the critical path in the baseline schedule, but could become a critical path activity if permit approval is delayed.

Phase 4. Initial Operation, Tuning and Testing

A period of 2 months is planned for initial operation, tuning and testing of the system. During this period the system will receive and treat the SRH Pond wastestreams. Primary activities during this period are tuning the process control loops and setpoint adjustment. Control setting adjustments may include flush durations, valve speed, level setpoints, process variables controlling equipment start/stop functions, clarifier coagulant and flocculant dosage rates, instrument air pressure settings for pneumatic operators, final adjustment of electrical settings and pump variable speed response rate. The process tuning period is typically 4-6 weeks following initial operation. This provides enough operating time to complete shakedown of the system and address any remaining items. Equipment vendors may be engaged during this period to address component issues or support final tuning.

Contractual performance testing of the clarifier will be performed during this period. These tests are to verify that the clarifier performance meets guarantee and the total suspended solids discharged from the Plant Drains Pond is within the target range. Performance tests will be performed over several days followed by analysis of the samples. Two weeks are planned for performance testing. At the completion of initial operation period, flows to SRH Pond will cease and be redirected to the Plant Drains Pond system.

3.6 Narrative Discussion of the Schedule and Visual Timeline Representation

Prior to 2018, as part a comprehensive effort to address both the CCR Rule and ELGs, a technical study was performed to evaluate options and support planning to comply with both rules. Following this initial study, a topographic survey and geotechnical/hydrogeological investigation of the recommended area for the Plant Drains Pond was performed. A conceptual design for the Plant Drains Pond was developed in 2018 with anticipated closure of the SRH Pond by end of 2023. EPA should note CPS Energy did not have a CCR closure trigger under the original CCR Rule as published in 2015.

Development of the initial detailed design for the Plant Drains Pond System was initiated in January of 2020. These preliminary design documents will be included in the RFP. A summary timeline representation of the primary activities and milestone dates from issuance of RFP is shown in Exhibit 3.14. A detailed project schedule is provided as Exhibit 3.15. Following the project critical path, the SRH Pond will cease receiving CCR and non-CCR flows on September 1, 2023.

The schedule includes parallel activities that may not be on the baseline schedule critical path. Parallel activities during construction include civil construction of the Plant Drains Pond and completion of the IFC design documents. Installation of equipment, piping and electrical and controls in the Pond Area will occur in parallel with site preparation, clearing, demolition and equipment installation for the Transfer Area. These activities will be completed prior to completion of the balance of plant construction. Based on the expected construction sequence and procurement schedule, the electrical and controls will be the last subsystems to be completed. During this period, the application to discharge to the Plant Drains Pond will be submitted to TCEQ for review and approval. Following completion of construction, the system will undergo start-up and commissioning. A 2-month initial operation period will follow which includes a 30 day availability run to demonstrate the reliability of the system prior to the cessation of CCR and non-CCR wastestream flows to the SRH Pond.

ALTERNATIVE CAPACITY INFEASIBILITY DEMONSTRATION
Sludge Recycle Holding (SRH) Pond

Exhibit 3.14 – Plant Drains Pond System Summary Timeline

						2020									2021											2022											2023							
Astivity Description	Duration			-10	-9	-8	-7 -(6 -5	-4	-3	-2	-1	1 2	3 4	4 5	6	7	8 9	10	11	12	13	14 1	15 1	6 1	7 18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34		
Activity Description	(months)	Start	Finish	J	F	М	A N	ΛJ	J	Α	S	0 1	N D	J	M	ΙΑ	М	J J	Α	S	0	N	D	J	F N	ΛΑ	М	J	J	Α	S	0	N	D	J	F	М	Α	М	J	J	Α	S	0
Preliminary Design and Planning	6	Jan 2020	Jul 2020	\					*																																			
Detailed Design	29	Apr 2020	Nov 2022				+	+	-				+					+														\vdash	•											
Contractor Bid, Selection and Award	10	Oct 2020	Aug 2021								•								♦																									
Procurement	14	Sep 2021	Dec 2022																	+														•										
Construction	17	Oct 2021	Mar 2020																		*																							
Permitting	4	Jan 2023	Jun 2023																																•					•				
Start-Up and Commisioning	3	Mar 2023	Jun 2023																																		•			\perp	<u> </u>			
Initial Operation and Tuning	2	Jun 2023	Aug 2023																																					•	—	\blacksquare		

Exhibit 3.15 - Plant Drains Pond System Detailed Schedule

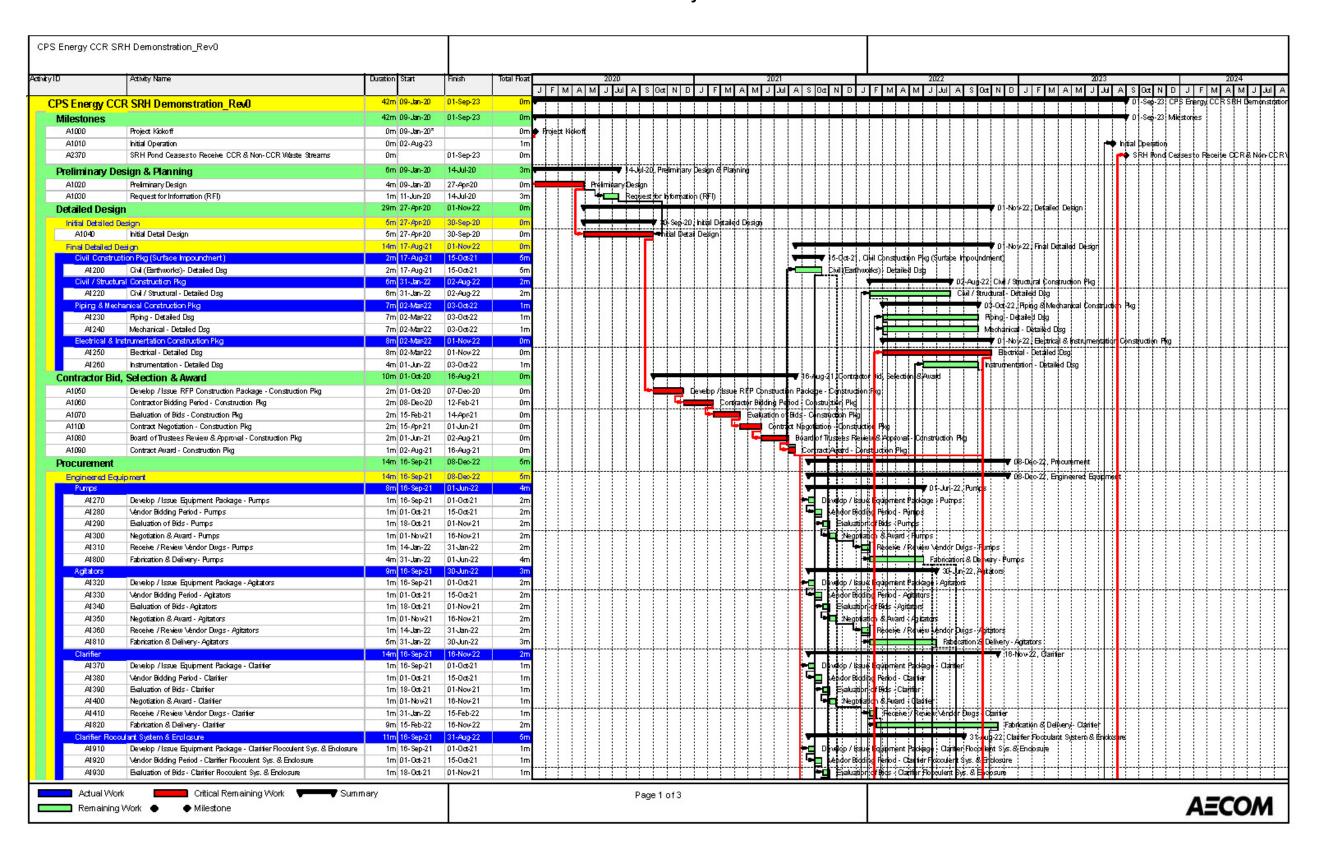
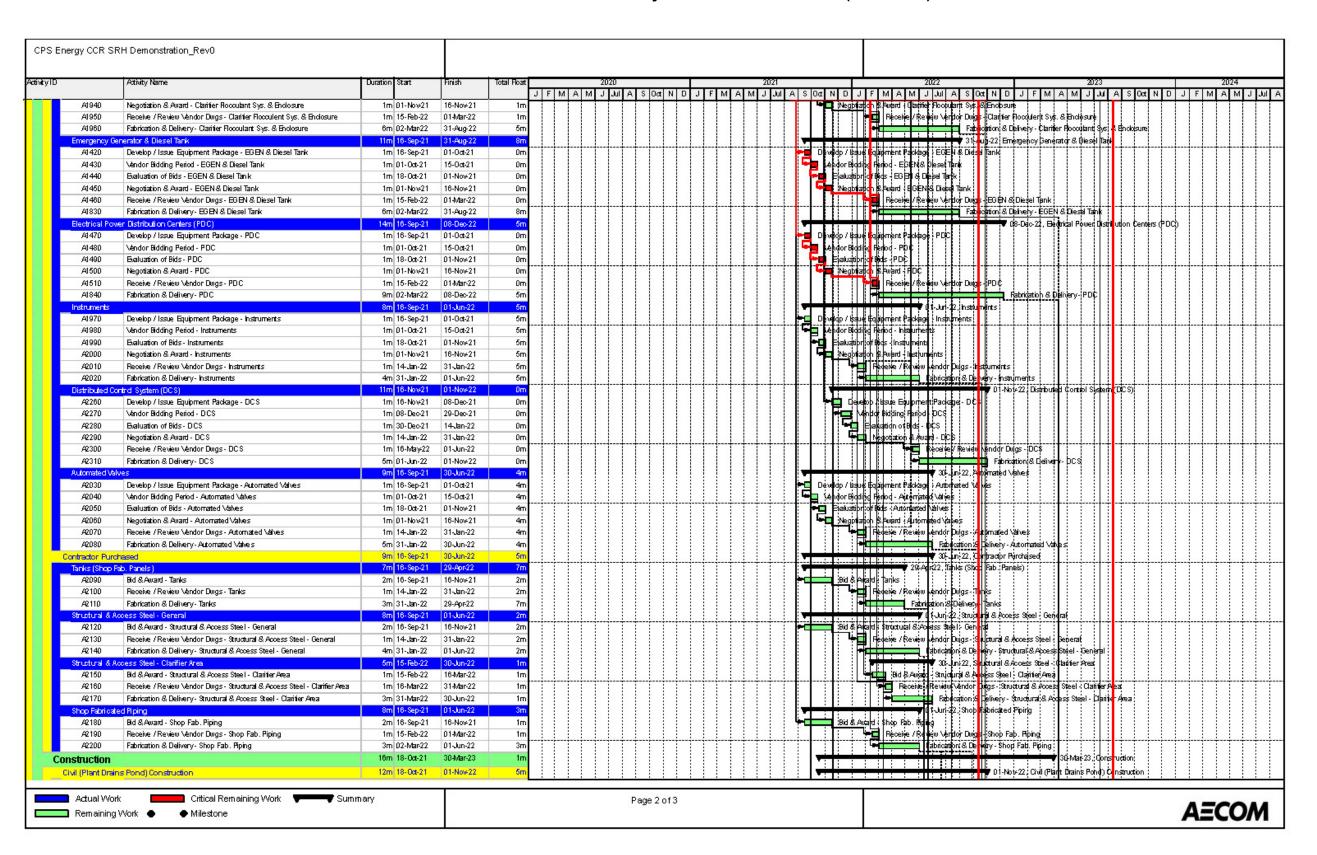
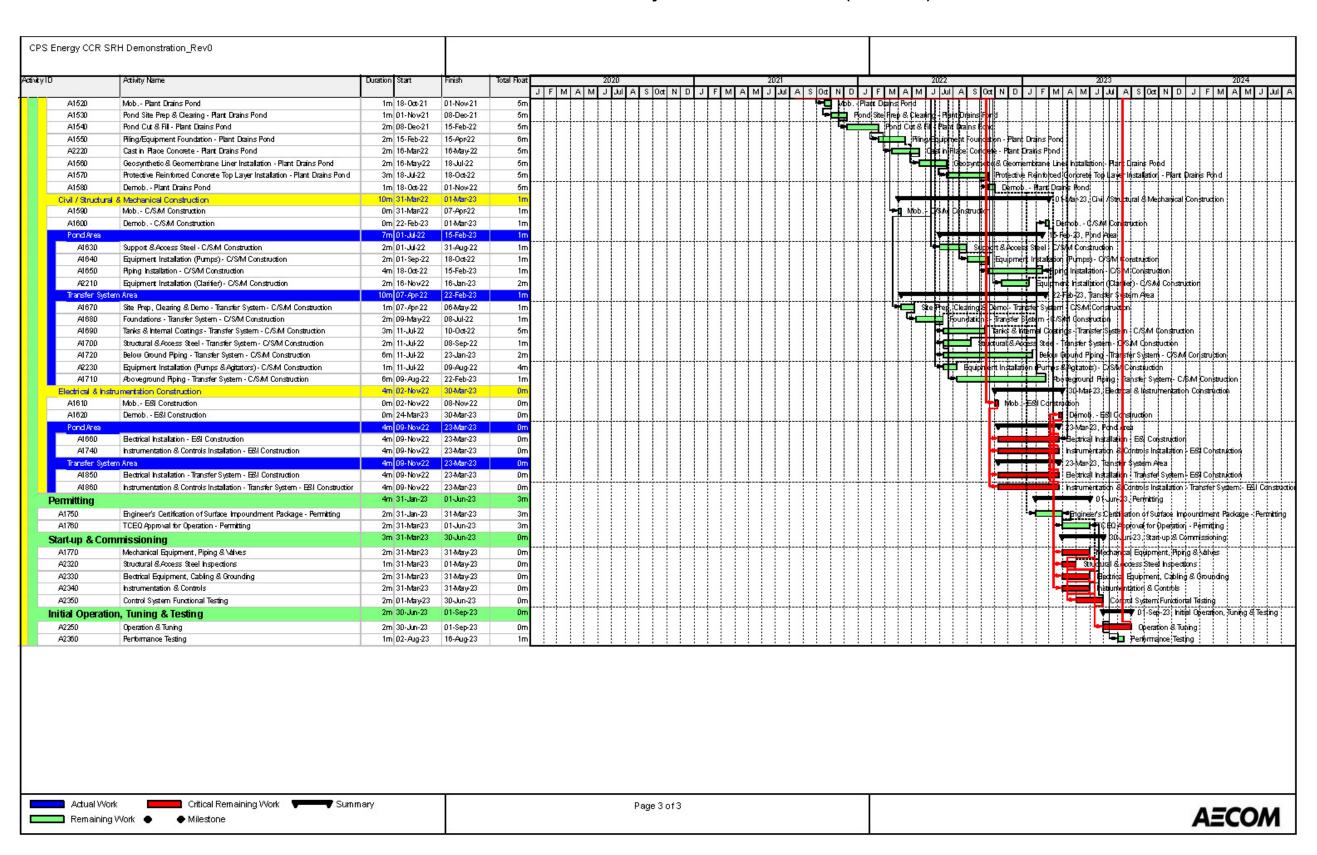




Exhibit 3.15 – Plant Drains Pond System Detailed Schedule (continued)

Exhibit 3.15 – Plant Drains Pond System Detailed Schedule (continued)

During construction of the new lined Plant Drains Pond and transfer system, the anticipated worker schedules will consist of 50-hour weeks. This will involve work 5 days per week, working approximately 10 hours per day. If weather or other delays are encountered, the worker schedule may be adjusted (increased) to address this lost time as it is critical systems are complete and operational by September 1, 2023 in order to comply with regulatory timelines.

3.7 Narrative Discussion of the Progress Made to Obtain Alternative Capacity for the CCR and/or Non-CCR Wastestreams

As part a comprehensive effort to address both the CCR Rule and ELGs, a technical study was performed to evaluate options and support planning to comply with both rules. Following this initial study, a topographic survey and geotechnical/ hydrogeological investigation of the recommended area for the Plant Drains Pond was performed. A conceptual design for the Plant Drains Pond was developed in 2018 with anticipated closure of the SRH Pond by end of 2023. EPA should note CPS Energy did not have a CCR closure trigger under the original CCR Rule as published in 2015. In response to the proposed revisions to the CCR Rule, detailed design of the Plant Drains Pond and Transfer System was initiated in January of 2020. A request for information (RFI) was submitted in June of 2020 requesting bidders to submit information regarding their qualifications and experience as well as budgetary costs and schedule to execute the work. In the initial design phase, drawings and specifications will be developed to define the scope and schedule for the project. This phase includes various field investigations, surveys and testing to collect information required for detailed design. The resulting design documents will be combined into a RFP package to be issued to the identified qualified bidders. This activity was initiated in October of 2020. This package will include the following design information:

- Description of Project
- Division of Responsibility
- General and Technical Specifications
- Process Descriptions, Preliminary Control Narrative and Mass Balances
- Navisworks 3D CAD Model
- Drawings:
 - General Arrangements and Site Plan
 - Demolition Drawings
 - Piping Drawings
 - Concrete and Structural Steel Drawings
 - Pond Drawings
 - Process Flow Diagrams (PFD)
 - Piping and Instrument Diagrams (P&IDs)
 - Electrical One-Lines
- Material Take-offs
 - Electrical and Instrumentation and Controls (I&C)
- Equipment Lists
- Electrical Load List

- Line List
- Input Output List
- Valve and Instrument Lists
- Investigational Reports and Surveys

www.erm.com Version: 4.0 Project No.: 0503422 Client: CPS Energy Calaveras Power Station 30 November 2020 Page 34

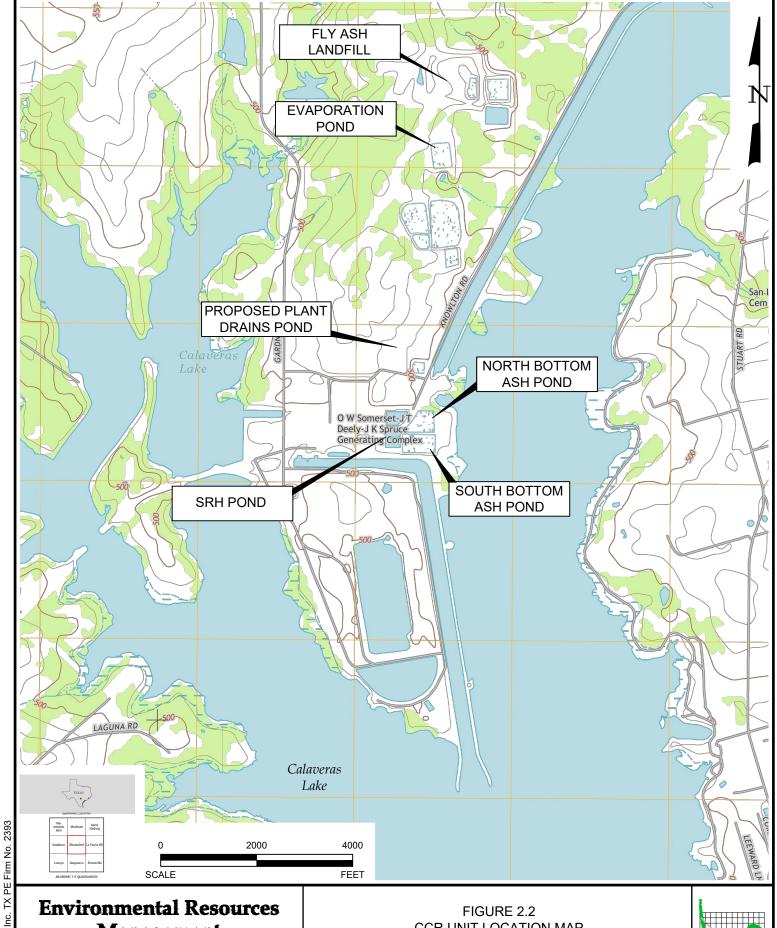
4. COMPLIANCE WITH SUBPART D

As identified in 40 CFR §257.103(f)(1)(iv)(B), to demonstrate that the criteria in 40 CFR §257.103(f)(1)(iii) have been met, the owner or operator must submit all of the following, if applicable:

- 1. A certification signed by the owner of operator that the facility is in compliance with all of the requirements of this subpart (See Appendix A);
- 2. Visual representation of hydrogeologic information at and around the CCR unit(s) that supports the design, construction and installation of the groundwater monitoring system. This includes all of the following:
 - i. Map(s) of groundwater monitoring well locations in relation to the CCR unit(s) (See Appendix B);
 - ii. Well construction diagrams and drilling logs for all groundwater monitoring wells (See Appendix C); and
 - iii. Maps that characterize the direction of groundwater flow accounting for seasonal variations (See Appendix D);
- 3. Constituent concentrations, summarized in table form, at each groundwater monitoring well monitored during each sampling event (See Appendix E);
- 4. A description of site hydrogeology including stratigraphic cross-sections (See Appendix F);
- Any corrective measures assessment conducted as required at §257.96 (Not Applicable no corrective measures assessment has been required);
- 6. Any progress reports on corrective action remedy selection and design and the report of final remedy selection require at §257.97(a) (Not Applicable no corrective action remedy has been required);
- 7. The most recent structural stability assessment required at §257.73(d) (See Appendix G); and
- 8. The most recent safety factor assessment required at §257.73(e) (See Appendix G).

www.erm.com Version: 4.0 Project No.: 0503422 (Houston) Projects\0503422 CPS Energy\DM\A10143

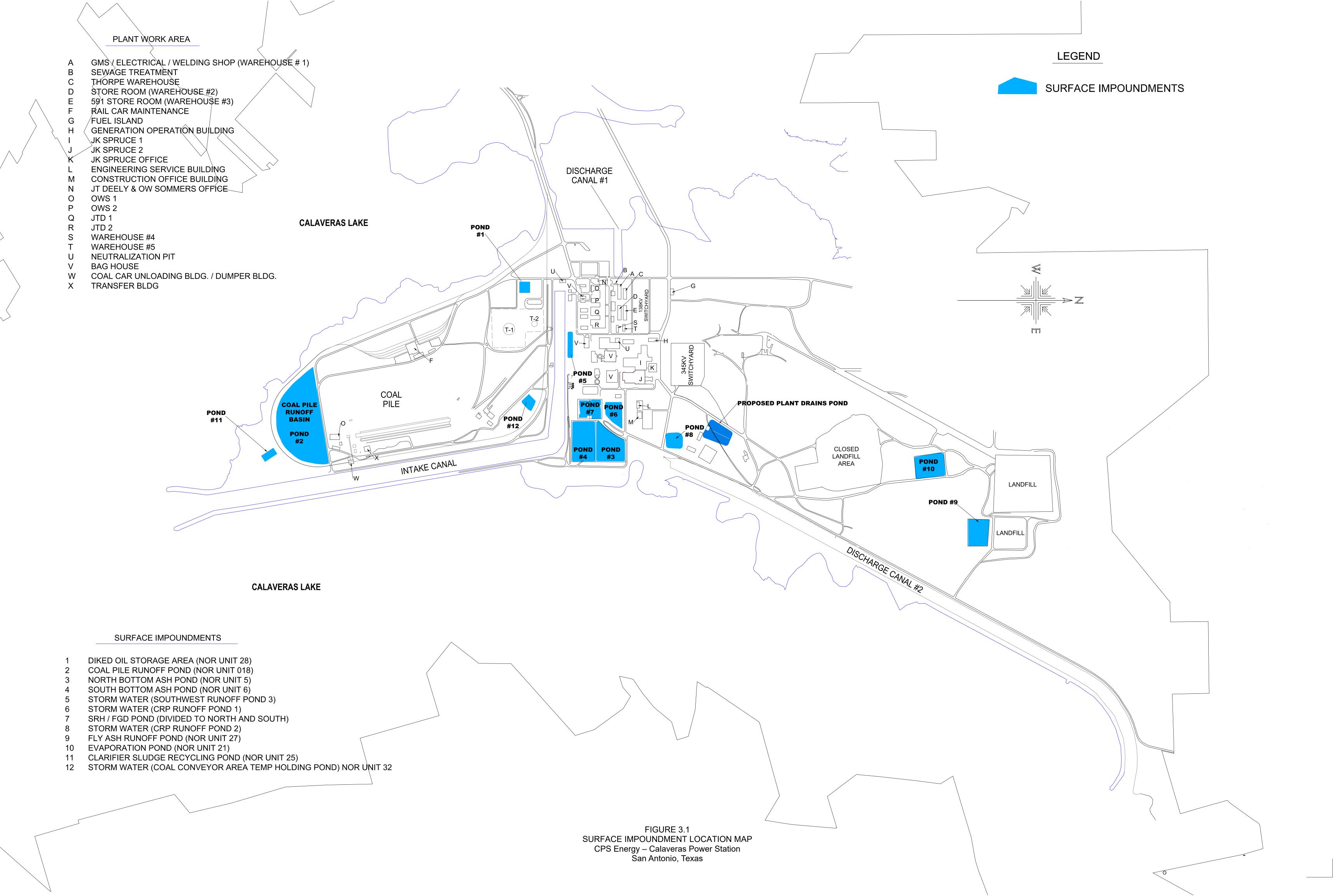
 DESIGN:
 NH
 DRAWN:
 EFC
 CHKD.:
 WZ


 DATE:
 7/25/2016
 SCALE:
 AS SHOWN
 REVISION:
 1

 W.O.NO:
 K:\GIS\CPS\Calaveras\MXD\0337367_CPSCalaveras_SiteLoc.mxd

FIGURE 2.1 FACILITY LOCATION MAP

CPS Energy - Calaveras Power Station San Antonio, Texas



DESIGN: CC DRAWN: RLM CHKD.: CC DATE: 11/30/2020 SCALE: AS SHOWN REV.: W.O. NO.: T:\DWG\AutoCAD\dwg\0337367\0337367_CCRUnitLocs_topo.dwg

FIGURE 2.2 **CCR UNIT LOCATION MAP**

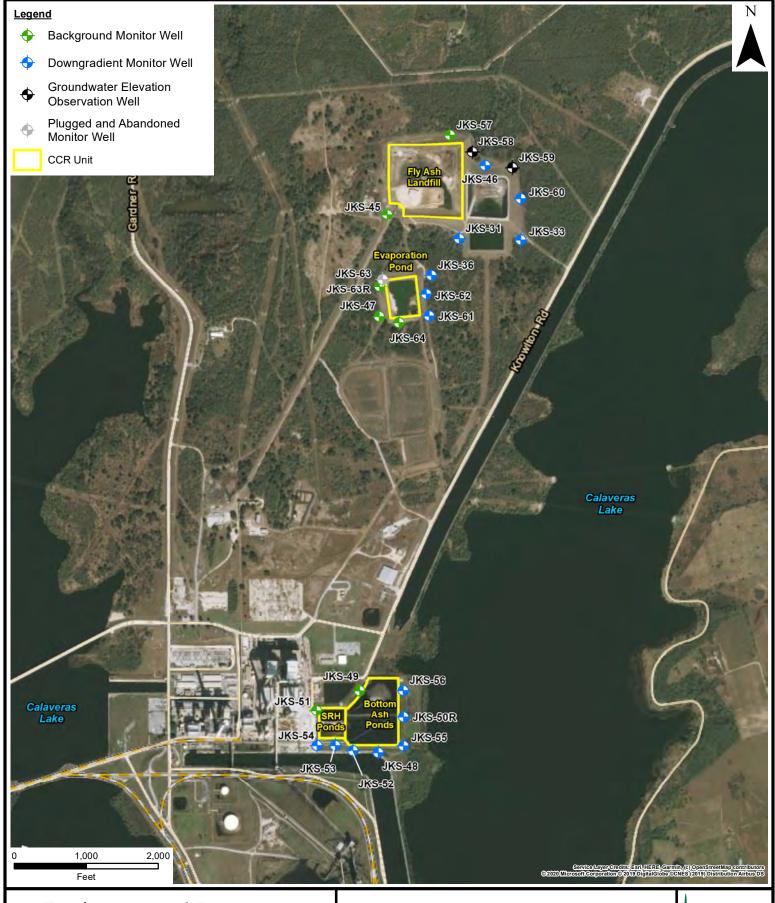
CPS Energy - Calaveras Power Station San Antonio, Texas

ALTERNATIVE CAPACITY DEMONSTRATION CERTIFICATION 40 CFR §257.103(f)(1)(iv)(B)(1)

CPS Energy Calaveras Power Station San Antonio, Texas

CERTIFICATION

As owner and operator of the Studge Recycle Holding (SRH) Pond, I hereby certify that the Calaveras Power Station is in compliance with all the requirements of Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments.


1/2/20 K.1.

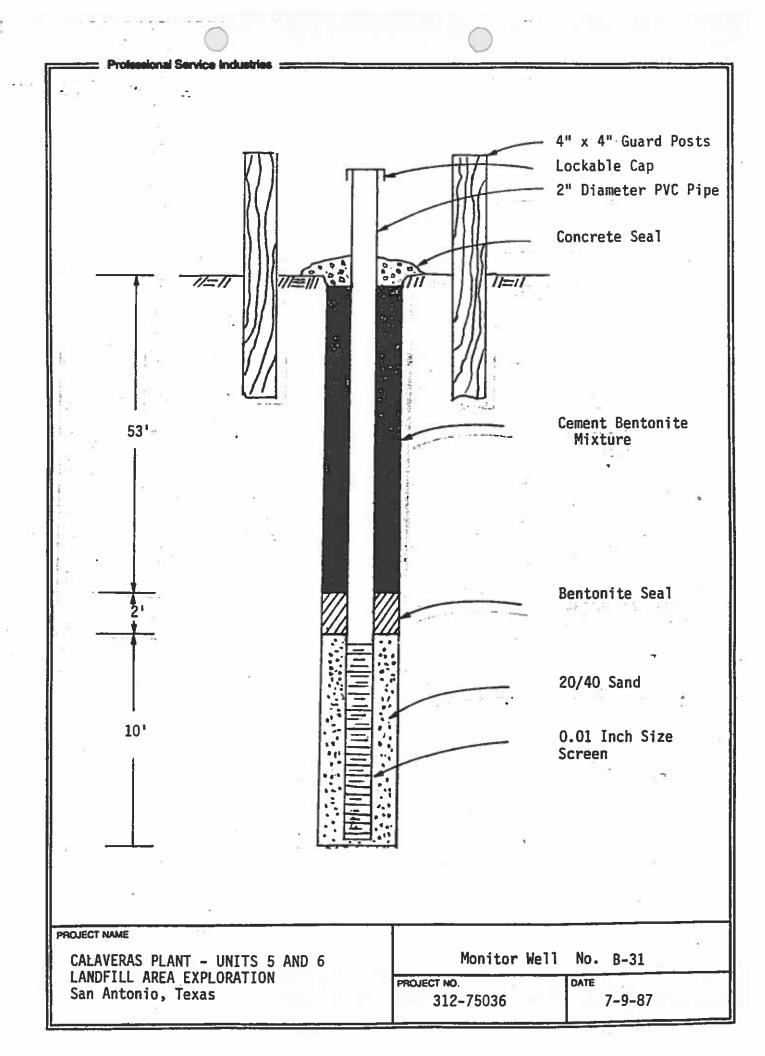
Benjamin L. Ethridge, P.E.

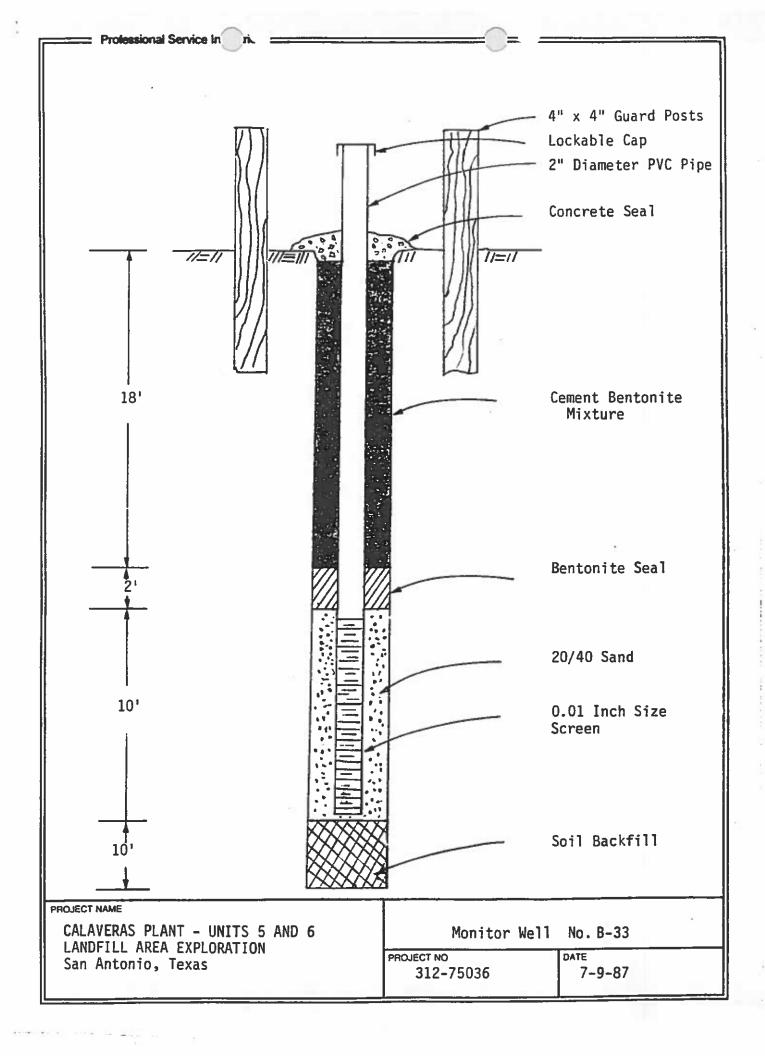
Senior VP Power Generation

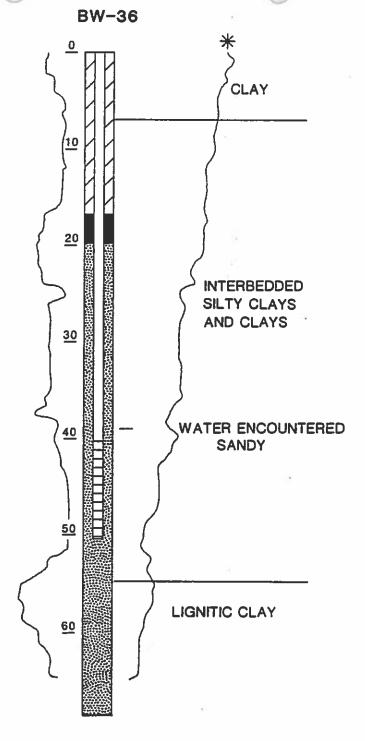
CPS Energy

ADDENDLY D	CROUNDWATER MONITORING WELL LOCATIONS MAD
APPENDIX B	GROUNDWATER MONITORING WELL LOCATIONS MAP

 DESIGN:
 WZ
 DRAWN:
 EFC
 CHKD.:
 WZ


 DATE:
 1/17/2020
 SCALE:
 AS SHOWN
 REVISION:
 0


 \usbnow100110bath\times\t


FIGURE 1
CCR WELL NETWORK LOCATION MAP
CPS Energy - Calaveras Power Station
San Antonio, Texas

APPENDIX C	WELL CONSTRUCTION DIAGRAMS AND DRILLING LOGS
ALLENDIX	WELL CONCINCOTION DIAGNAMO AND DIVILLING ECCO

*Calibration problem on resistivity curve

ESPEY, HUSTON & ASSOCIATES, INC. Engineering & Environmental Consultants

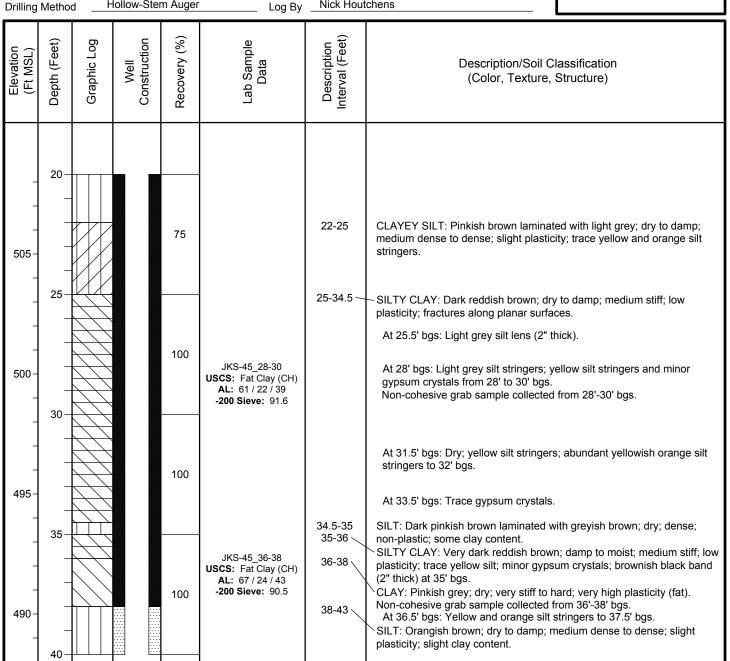
FIGURE A-2
MONITORING WELL BW-36
GEOPHYSICAL/LITHOLOGIC LOGS

Proj. No. <u>0337367</u>	Boring/Well	ID JKS	S-45		Date Drilled	<u>2016-04-0</u> 4
Project <u>Groundwa</u>	ter Investigation	Owner_	CPS Energ	ју		
Location <u>Calaveras</u>	Power Station - San Antonio	Boring T	.D. <u>62.00</u>	•	Boring Diam.	8.25 "
N. Coord. <u>13667132</u>	.78' E. Coord. <u>2186615.40'</u>	Surface	Elevation _	528.3	<u>1'</u> <u>Ft. N</u>	ISL Datum
Screen: Type Sch.	40 PVC Diam	ı. <u>2.00 "</u>	Length	<u>15.00 '</u>	Slot Size	0.01 "
Casing: Type Sch.	40 PVC Diam	ı. <u>2.00 "</u>	Length4	40.00 '	Sump Length	_0'
Top of 0	Casing Elevation 531.46 '		-	5	Stickup3.15 '	
Depth to Water: 1.	Ft. btoc <u>47.19</u> (<u>201</u>	6-05-31) 2. I	Ft	()
Drilling Company S	trata Core Services, LLC	Driller _	Joseph R	ay		
Drilling Method H	Iollow-Stem Auger	Log By	Nick Hout	chens		

JKS-45 DRILLING LOG

NOTES

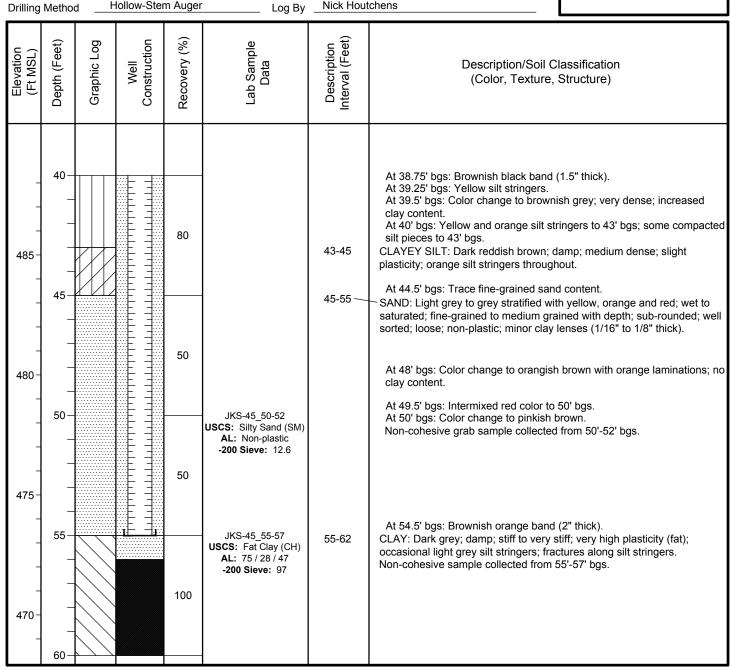
Drilling	ng Method Hollow-Stern Auger Log B			Log ву	NICK HOUL		
Elevation (Ft MSL)	Depth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
528.31 <u> </u>	0-			0		0-5	NO RECOVERY: Previously excavated by hydrovac truck.
- - - 520 -	5			100		5-7 7-10	SILTY CLAY: Brown; dry to damp; medium stiff; medium plasticity; some white calcareous concretions present. At 5.5' bgs: Slight orange mottling. At 6' bgs: White silt lens. CLAY: Grey; dry to damp; stiff; medium to high plasticity; minor silt content at depth; white calcareous concretions throughout. At 7.5' bgs: Orange mottling. At 9' bgs: Yellowish orange silt lens.
- - 515 -	10-			50		10-12.5 12.5-15	SILT: Alternating light grey and yellowish brown, stratified with orange, yellow, and red; damp; loose; non-plastic. NO RECOVERY.
- - 510 -	15— — — — — — 20—			75		15-22	SILT: Brownish light grey; damp; loose to medium dense; non-plastic; some yellow stringers. At 16' bgs: Alternating pinkish brown stratifications (2" thick). At 16.5' bgs: Orange band (2" thick). At 17.5' bgs: Orange band (1" thick). At 19' bgs: Light grey and pinkish brown laminations; minor clay content; occasional orange silt stringers.



Proj. No	0337367	Boring/Well ID	JKS-45		Date Drilled _	2016-04-04	
Project _	Groundwater Investigation	0	wner <u>CPS En</u>	ergy			
Location Calaveras Power Station - San Antonio Boring T.D. 62.00 ' Boring Diam. 8.25 " N. Coord. 13667132.78' E. Coord. 2186615.40' Surface Elevation 528.31 ' Ft. MSL Datum Screen: Type Sch. 40 PVC Diam. 2.00 " Length 15.00 ' Slot Size 0.01 "							
N. Coord	N. Coord. 13667132.78' E. Coord. 2186615.40' Surface Elevation 528.31' Ft. MSL Datum						
Screen: Ty	ype Sch. 40 PVC	Diam. <u>2</u>	2.00 " Length	15.00 <u>'</u>	Slot Size	0.01 "	
Casing: Ty	ype Sch. 40 PVC	Diam2	2.00 " Length	40.00 '	Sump Length	0'	
	Top of Casing Elevation	531.46 '		S	tickup <u>3.15 '</u>		
Depth to Wa	ater: 1. Ft. btoc <u>47.1</u>	9 (_2016-0	<u>95-31</u>) 2.	Ft	()	
Drilling Com	npany Strata Core Service	es, LLC D	riller Joseph	n Ray			
	Hollow Stom Augo		n Nick H	outobono			

JKS-45 DRILLING LOG

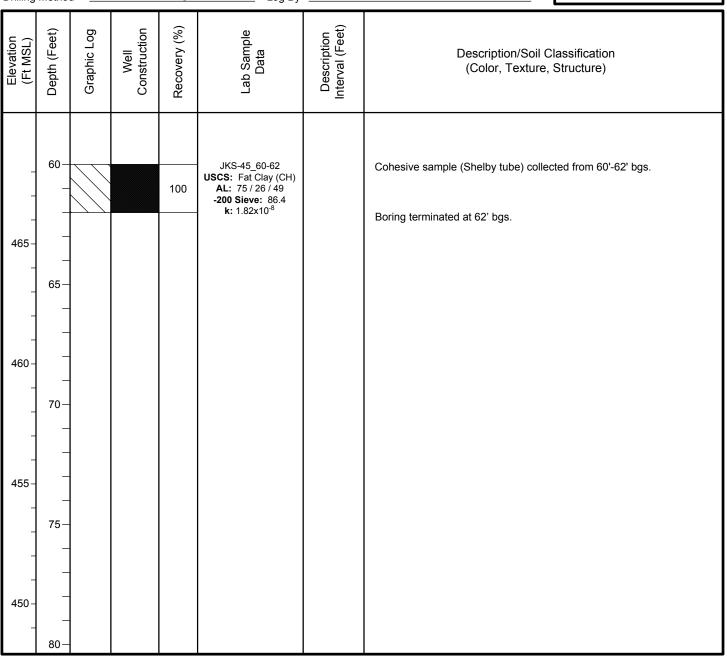
NOTES



Proj. No. 0337367 Boring/Well ID JKS-45 Date Drilled 2016-04-04						
Project Groundwater Investigation Owner CPS Energy						
•						
N. Coord. <u>13667132.78'</u> E. Coord. <u>2186615.40'</u> Surface Elevation <u>528.31'</u> <u>Ft. MSL</u> Datum						
Screen: Type Sch. 40 PVC Diam. 2.00 " Length 15.00 ' Slot Size 0.01 "						
,						
Top of Casing Elevation _531.46 ' Stickup _3.15 '						
Depth to Water: 1. Ft. btoc <u>47.19</u> (<u>2016-05-31</u>) 2. Ft()						
Drilling Company Strata Core Services, LLC Driller Joseph Ray						
Drilling Method Hollow-Stem Auger Log By Nick Houtchens						

JKS-45 DRILLING LOG

NOTES



Proj. No.	0337367	Boring/Well I	D JK	S-45	Date Drilled	<u>2016-04-0</u> 4
Project	Groundwater Investigation		Owner_	CPS Energy		
Location	Calaveras Power Station -	San Antonio	Boring T	.D. <u>62.00 '</u>	Boring Diam.	8.25 "
N. Coord.	13667132.78' E. Coord.	2186615.40'	Surface	Elevation	528.31 ' Ft.	MSL Datum
Screen:	Type Sch. 40 PVC	Diam	. 2.00 "	Length15	.00 ' Slot Size _	0.01 "
Casing:	Type Sch. 40 PVC	Diam	. 2.00 "	Length 40	.00 ' Sump Length	n <u>0'</u>
	Top of Casing Elevation	531.46 '		_	Stickup 3.15	1
Depth to W	/ater: 1. Ft. btoc <u>47.</u>	19 (201	6-05-31) 2. Ft.	()
Drilling Co	mpany Strata Core Servi	ces, LLC	Driller	Joseph Ray	,	
	. ,			• •		
Drilling Me	thodHollow-Stem Aug	er	Log By	Nick Houtch	nens	

JKS-45 DRILLING LOG

NOTES

STATE OF TEXAS WELL REPORT for Tracking #424209

Owner:

CPS Energy

Owner Well #:

JKS-45

Address:

PO Box 2906

Grid #:

68-46-5

Well Location:

San Antonio, TX 78299 Calaveras Power Station

Latitude:

29° 19' 01" N

San Antonio, TX

Longitude:

098° 18' 08" W

Well County:

Bexar

Elevation:

528 ft. above sea level

Type of Work:

New Well

Proposed Use:

Monitor

Drilling Start Date: 4/4/2016

Drilling End Date: 4/8/2016

Diameter (in.)

Top Depth (ft.)

Bottom Depth (ft.)

Borehole:

8.25

0

62

Drilling Method:

Hollow Stem Auger

Borehole Completion:

Filter Packed

Top Depth (ft.)

Bottom Depth (ft.)

Filter Material

Size

Filter Pack Intervals:

38

56

Sand

20/40

Annular Seal Data:

No Data

Seal Method: Hand Mixed

Distance to Property Line (ft.): No Data

Sealed By: Driller

Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion:

Surface Slab Installed

Surface Completion by Driller

Water Level:

No Data

Packers:

No Data

Type of Pump:

No Data

Well Tests:

No Test Data Specified

Description (number of sacks & material)

Top Depth (ft.)

Bottom Depth (ft.)

Plug Information:

Bentonite

52

62

Strata Depth (ft.)

Water Type

Water Quality:

No Data

No Data

Chemical Analysis Made:

Did the driller knowingly penetrate any strata which

contained injurious constituents?: N

No

No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data:

The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information:

Strata Core Services, LLC

112 S. Norwood Drive Hurst, TX 76053

Driller Name:

Joseph Ray

License Number:

58794

Comments:

No Data

DESCRIPT	TON & COL	Lithology: OR OF FORMATION MATERIAL		BLANK	Casing PIPE & WELL	j: SCREEN	DATA	
Top (ft.)	Bottom (ft.)	Description	Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom
0	5	Ash		-	New Plastic	105		(ft.)
5	8	Lt brn sandy clay	2	Riser	(PVC)	40	0	40
8	14	It gry sandy clay	2	Screen	New Plastic (PVC)	40 10	40	55
14	20	Lt gray sand						
20	40	Brn silty clay						
40	45	Lt gray sand						
45	55	yellowlorg silty sand						
55	62	Green/gray clay						

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

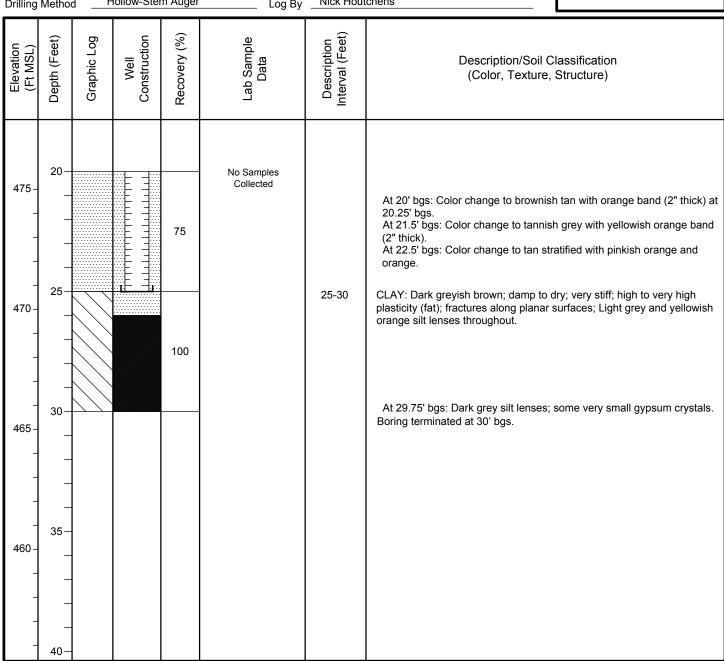
Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

Proj. No. <u>0337367</u> Boring/Well ID <u>JKS-46</u> Date Drilled <u>2016-04-0</u> 5
Project Groundwater Investigation Owner CPS Energy
Location Calaveras Power Station - San Antonio Boring T.D. 30.00 Boring Diam. 8.25 Boring Diam.
N. Coord. <u>13667810.11'</u> E. Coord. <u>2187972.31'</u> Surface Elevation <u>495.75'</u> <u>Ft. MSL</u> Datum
Screen: Type Sch. 40 PVC Diam. 2.00 " Length 10.00 ' Slot Size 0.01 "
Casing: Type Sch. 40 PVC Diam. 2.00 Length 15.00 Sump Length 0'
Top of Casing Elevation 499.08 ' Stickup 3.33 '
Depth to Water: 1. Ft. btoc <u>19.38</u> (<u>2016-05-31</u>) 2. Ft()
Drilling Company Strata Core Services, LLC Driller Joseph Ray
Drilling Method Hollow-Stem Auger Log By Nick Houtchens

JKS-46 DRILLING LOG

NOTES

Drining	wetno	u	ioliow-otci	- 0 -	Log By		
Elevation (Ft MSL)	Depth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
495.75 - 495 - - -	0-			0	No Samples Collected	0-5	NO RECOVERY: Previously excavated by hydrovac truck.
490 - - - - -	5			100		5-8 8-10	CLAYEY SAND: Reddish orange; damp to moist; fine-grained; sub-round; well-sorted; medium dense; slight to low plasticity; some silt content. At 7.5' bgs: Dense grey clay lenses (1/2" thick). SANDY CLAY: Reddish orange; medium stiff; slight to low plasticity; minor silt content; dense grey clay lenses (1/2" thick); yellow and yellowish orange silt stringers. At 9.5' bgs: Increased silt content.
485 - - - -	10 —			75		10-11 11-15	CLAY: Grey; dry; stiff; medium plasticity; minor silt content; fractures along tan silt to fine-grained sand stringers. SAND: Tan; damp; fine-grained; sub-round, well sorted; loose; non-plastic. At 13' bgs: Striated with pink and orange. At 14' bgs: Color change to reddish orange; some silt content; occasional clay lenses.
480	15— — — — — 20—			85		15-19.5 19.5-25	At 14.75' bgs: Orange silt lens. SILT: Red with orange; damp to dry; loose; slight plasticity. At 15.5' bgs: Color change to grey. At 15.75' bgs: Color change to red. At 16' bgs: Color change to tan with yellow; fractures along planar surfaces. At 17' bgs: Moist. At 18.75' bgs: Color change to red and orange. SAND: Tan; moist; fine-grained, coarsens with depth; sub-round; well sorted; loose; non-plastic; minor silt and trace clay; orange and yellow silt stringers.



Proj. No. _0337367 Boring/Well ID _JKS-46 Date Drilled _2016-04-05						
Project Groundwater Investigation Owner CPS Energy						
Location Calaveras Power Station - San Antonio Boring T.D. 30.00' Boring Diam. 8.25 "						
Location Calaveras Power Station - San Antonio Boring T.D. 30.00 ' Boring Diam. 8.25 " N. Coord. 13667810.11' E. Coord. 2187972.31' Surface Elevation 495.75 ' Ft. MSL Datum Screen: Type Sch. 40 PVC Diam. 2.00 " Length 10.00 ' Slot Size 0.01 " Casing: Type Sch. 40 PVC Diam. 2.00 " Length 15.00 ' Sump Length 0 ' Top of Casing Elevation 499.08 ' Stickup 3.33 '						
Screen: Type _ Sch. 40 PVC Diam 2.00 " Length _ 10.00 ' Slot Size						
Casing: Type Sch. 40 PVC Diam. 2.00 " Length 15.00 ' Sump Length 0'						
Top of Casing Elevation 499.08 ' Stickup 3.33 '						
Depth to Water: 1. Ft. btoc <u>19.38</u> (<u>2016-05-31</u>) 2. Ft()						
Drilling Company Strata Core Services, LLC Driller Joseph Ray						
Drilling Method Hollow-Stem Auger Log By Nick Houtchens						

JKS-46 DRILLING LOG

NOTES

STATE OF TEXAS WELL REPORT for Tracking #424210

Owner:

CPS ENERGY

Owner Well #: **JKS-46**

Address:

PO BOX 2906

SAN ANTONIO, TX 78299

Latitude:

Grid #:

68-46-5

Well Location:

Calaveras Power Station

SAN ANTONIO, TX

Longitude:

29° 19' 01" N

Well County:

098° 18' 08" W

Bexar

Elevation:

496 ft. above sea level

Type of Work:

New Well

Proposed Use:

Monitor

Drilling Start Date: 4/4/2016

Drilling End Date: 4/8/2016

Diameter (in.)

Top Depth (ft.)

Bottom Depth (ft.)

Borehole:

8.25

0

30

Drilling Method:

Hollow Stem Auger

Borehole Completion:

Filter Packed

Top Depth (ft.)

Bottom Depth (ft.)

Filter Material

Size

Filter Pack Intervals:

13

25

Sand

20/40

Annular Seal Data:

No Data

Seal Method: Hand Mixed

Distance to Property Line (ft.): No Data

Sealed By: Driller

Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion:

Surface Slab Installed

Surface Completion by Driller

Water Level:

No Data

Packers:

No Data

Type of Pump:

No Data

Well Tests:

No Test Data Specified

Description (number of sacks & material)

Top Depth (ft.)

Bottom Depth (ft.)

Plug Information:

Bentonite

26

30

Strata Depth (ft.)

Water Type

Water Quality:

No Data

No Data

Chemical Analysis Made:

Did the driller knowingly penetrate any strata which

contained injurious constituents?:

No

No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data:

The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information:

Strata Core Services, LLC

112 S. Norwood Drive Hurst, TX 76053

Driller Name:

Joseph Ray

License Number:

58794

Comments:

No Data

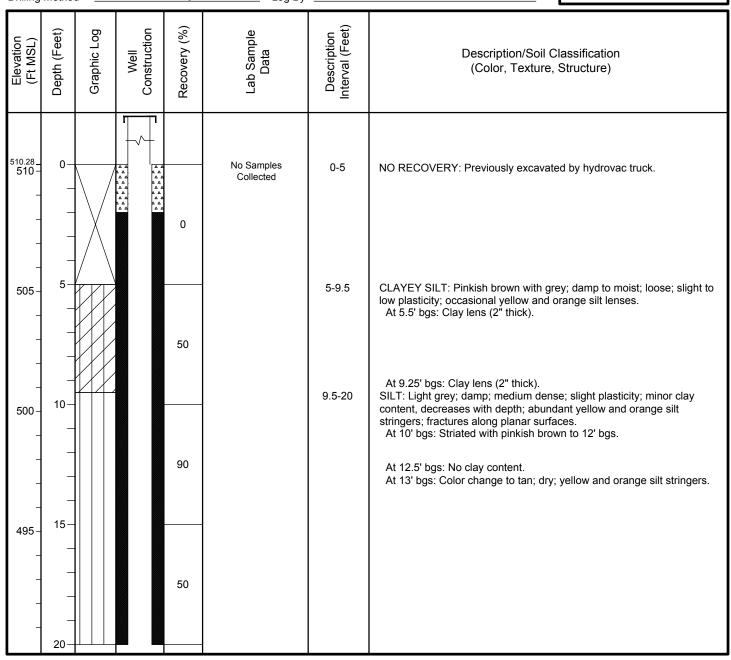
DESCRIP	TION & COL	Lithology: OR OF FORMATION MATERIAL		BLANK	Casing PIPE & WELL		DATA	
Top (ft.)	Bottom (ft.)	Description	Dla (în.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
0	5	ASH		Disease	New Plastic		-	
5	8	LT BRN SANDY CLAY	2	Riser	(PVC)	40	0	15
8	14	LT GRY CLAY	2	Screen	New Plastic (PVC)	40 10	15	25
14	28	LT GRY SAND						
28	30	BRN CLAY						

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

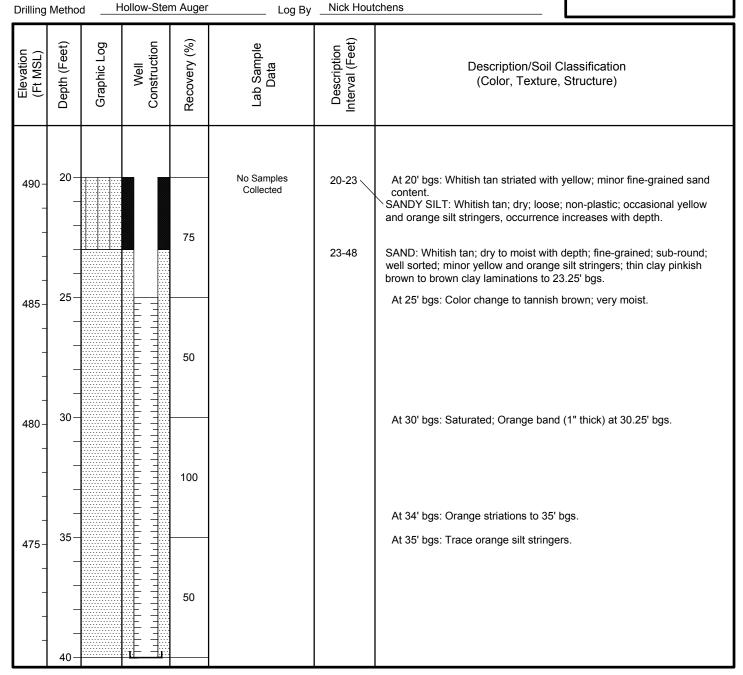
Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880



Proj. No	0337367	Boring/Well I	D JK	S-47		Date Drilled	<u>2016-04-0</u> 5
Project _	Groundwater Investigation		Owner_	CPS Ener	rgy		
Location _	Calaveras Power Station -	San Antonio	Boring T	.D. <u>48.00</u>	0'	Boring Diam.	8.25 "
N. Coord	13665709.79' E. Coord.	2186503.87'	Surface	Elevation	510.2	28 ' Ft. M	<u>ISL</u> Datum
Screen: Ty	pe Sch. 40 PVC	Diam	. 2.00 "	Length _	15.00 '	Slot Size	0.01 "
Casing: Ty	ype Sch. 40 PVC	Diam	. 2.00 "	Length _	25.00 '	Sump Length	_0'
	Top of Casing Elevation	513.63 '		_		Stickup 3.35	
Depth to Wa	ater: 1. Ft. btoc <u>31.</u>	<u>37 (2010</u>	6-05-31) 2.	Ft	()
Drilling Com	pany Strata Core Servi	ces, LLC	Driller	Joseph F	Ray		
			_				
Drilling Meth	nodHollow-Stem Aug	er	Log By	Nick Hou	utchens		

JKS-47 DRILLING LOG

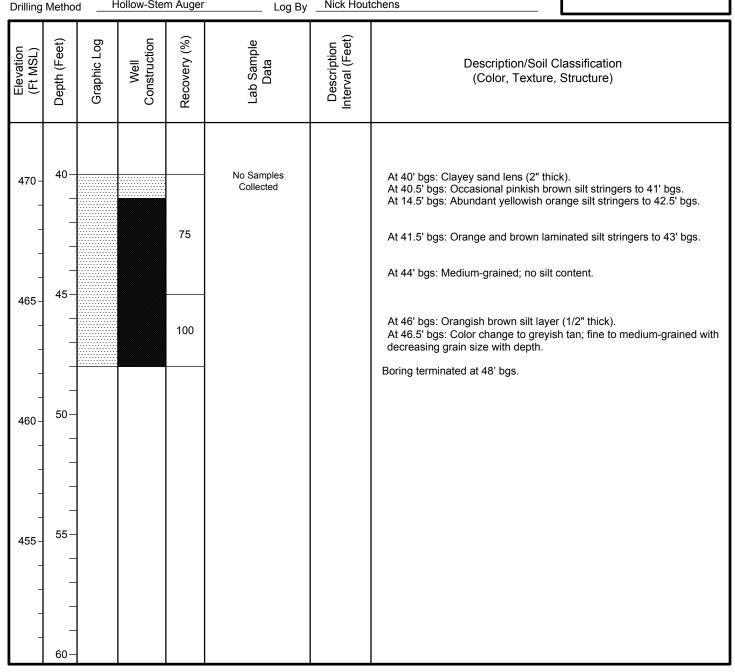
NOTES



Proj. No.	0337367	Boring/Well ID) <u>JKS</u>	47		Date Drilled _	<u>2016-04-0</u> 5
Project	Groundwater Investigation		OwnerC	PS Energ	ду		
Location	Calaveras Power Station - S	San Antonio	Boring T.D	. 48.00	<u>'</u>	Boring Diam.	8.25 "
N. Coord.	13665709.79' E. Coord.	2186503.87'	Surface El	evation _	510.2	<u>8'</u> <u>Ft. M</u>	SL Datum
Screen:	Гуре <u>Sch. 40 PVC</u>	Diam.	2.00 <u>L</u>	ength	<u> 15.00 '</u>	Slot Size	0.01 "
Casing:	Гуре <u>Sch. 40 PVC</u>	Diam.	<u>2.00 "</u> L	ength	<u>25.00 '</u>	Sump Length	_0'
	Top of Casing Elevation	513.63 '			5	Stickup3.35 '	
Depth to W	/ater: 1. Ft. btoc <u>31.3</u>	(2016	-05-31	_) 2.	Ft	()
Drilling Cor	mpany <u>Strata Core Service</u>	es, LLC	Driller	Joseph R	ay		

JKS-47 DRILLING LOG

NOTES



Proj. No.	033736	7	Boring/Well I	Boring/Well ID JKS-47				<u>2016-04-0</u> 5
Project	Ground	water Investigation		Owner CPS Energy				
Location	Calaver	as Power Station -	San Antonio	Boring T	.D. <u>48.0</u>	0'	Boring Diam.	8.25 "
N. Coord. <u>13665709.79'</u> E. Coord. <u>2186503.87'</u> Surface Elevation <u>510.28'</u> <u>Ft. MSL</u> Date								MSL Datum
Screen:	Type <u>Sc</u>	h. 40 PVC	Diam	. 2.00 "	Length _	15.00 '	Slot Size	0.01 "
Casing:	Type <u>Sc</u>	h. 40 PVC	Diam	. 2.00 "	Length _	25.00 '	Sump Length	_0'
Top of Casing Elevation _513.63 ' Stickup _3.35 '								
Depth to W	/ater: 1.	Ft. btoc31.5	37 (_201	6-05-31) 2.	Ft	()
Drilling Co	mpany	Strata Core Service	ces, LLC	Driller _	Joseph	Ray		
Drilling Me	thod	Hollow-Stem Auge	er	Log By	Nick Ho	utchens		

JKS-47 DRILLING LOG

NOTES

STATE OF TEXAS WELL REPORT for Tracking #424211 Owner: **CPS ENERGY** Owner Well #: **JKS-47** Address: PO BOX 2906 Grid #: 68-46-5 SAN ANTONIO, TX 78299 Latitude: 29° 18' 01" N Calaveras Power Station Well Location: SAN ANTONIO, TX Longitude: 098° 18' 08" W Well County: Bexar Elevation: 510 ft. above sea level Type of Work: **New Well** Proposed Use: Monitor Drilling Start Date: 4/4/2016 Drilling End Date: 4/8/2016 Diameter (in.) Top Depth (ft.) Bottom Depth (ft.) Borehole: 8.25 0 48 Drilling Method: Hollow Stem Auger Borehole Completion: Filter Packed Top Depth (ft.) Bottom Depth (ft.) Fifter Material Size Filter Pack Intervals: 23 41 Sand 20/40 Top Depth (ft.) Bottom Depth (ft.) Description (number of sacks & material) Annular Seal Data: 2 23 Bentonite 15 Bags/Sacks Seal Method: Hand Mixed Distance to Property Line (ft.): No Data Sealed By: Driller Distance to Septic Field or other concentrated contamination (ft.): No Data Distance to Septic Tank (ft.): No Data Method of Verification: No Data Surface Completion: No Data Water Level: No Data

Packers:

No Data

Type of Pump:

No Data

Well Tests:

No Test Data Specified

Description (number of sacks & material)

Top Depth (ft.) Bottom Depth (ft.)

Plug Information:

Bentonite

41

48

Strata Depth (ft.)

Water Type

Water Quality:

No Data

No Data

Chemical Analysis Made:

Did the driller knowingly penetrate any strata which

contained injurious constituents?:

The driller did certify that while drilling, deepening or otherwise altering the above

No

No

described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be

completed or plugged in such a manner as to avoid injury or pollution.

Certification Data:

The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in

the report(s) being returned for completion and resubmittal.

Company Information: Strata Core Services, LLC

112 S. Norwood Drive Hurst, TX 76053

Driller Name:

Joseph Ray

License Number:

58794

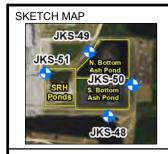
Comments:

No Data

DESCRIPT	TION & COL	Lithology: OR OF FORMATION MATERIAL		BLANK	Casing PIPE & WELL		DATA	
Top (ft.)	Bottom (ft.)	Description	Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
0	5	ASH	1000	Disease	New Plastic	40		
5	8	LT BRN SANDY CLAY	2	Riser	(PVC)	40	0	25
8	14	LT GRAY SANDY CLAY	2	Screen	New Plastic (PVC)	40 10	25	40
14	20	LT GRAY SAND			N. 100			
20	40	BRN SILTY CLAY						
40	48	LT GRAY SAND						

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

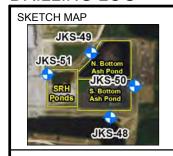
TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.


Please include the report's Tracking Number on your written request.

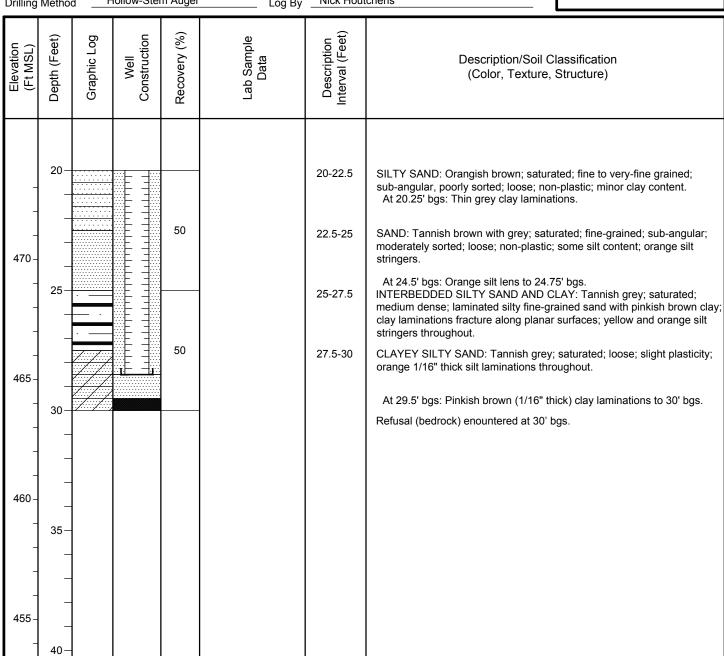
Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

Proj. No. <u>0337367</u> Boring/Well ID <u>JKS-48</u> Date Drilled <u>2016-04-0</u> 6
Project Groundwater Investigation Owner CPS Energy
Location Calaveras Power Station - San Antonio Boring T.D. 30.00 Boring Diam. 8.25 Boring Diam.
N. Coord. <u>13659658.78'</u> E. Coord. <u>2186490.78'</u> Surface Elevation <u>493.71'</u> <u>Ft MSL</u> Datum
Screen: Type _ Sch. 40 PVC Diam 2.00 " Length _ 10.00 ' Slot Size
Casing: Type Sch. 40 PVC Diam. 2.00 Length 18.50 Sump Length 0'
Top of Casing Elevation 497.19' Stickup 3.48'
Depth to Water: 1. Ft. btoc <u>11.28</u> (<u>2016-05-31</u>) 2. Ft()
Drilling Company Strata Core Services, LLC Driller Joseph Ray
Drilling Method Hollow-Stem Auger Log By Nick Houtchens

JKS-48 DRILLING LOG


NOTES

Drilling Met	noa <u> </u>	ioliow-Steri	ii Augei	Log By	NICK HOUL	
Elevation (Ft MSL) Deoth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
493.71- (0		0		0-5	NO RECOVERY: Previously excavated by hydrovac truck.
- 490 - - -	5	_			5-6 6-6.5 6.5-7	/ CLAYEY SILT: Orangish brown; damp; medium dense to dense; slight to low plasticity. At 5.5' bgs: Brown band (2" thick). At 5.75' bgs: Color change to brown; damp to dry; minor clay content; fractures along planar surfaces. SILTY CLAY: Orangish brown heavily mottled with grey and orange; damp; stiff; medium plasticity; occasional grey and orange silt stringers. SILT: Brownish tan with grey and orange; damp; medium dense; slight
- 485 - - 10	0-	_	100	JKS-48_10-12.5 USCS : Clayey Sand (SC)	7-7.5 7.5-12.5	plasticity; trace clay. SILTY CLAY: Orangish brown heavily mottled with grey and orange; damp; stiff; medium plasticity; occasional grey and orange silt stringers. CLAYEY SILT: Brown; damp to moist; medium dense; low plasticity; light grey and orange silt stringers. At 9' bgs: Dense silty clay layer (2" thick). At 9.25' bgs: Dense silty clay layer (2" thick). Non-cohesive grab sample collected from 10'-12.5' bgs.
480 -			75	AL: 35 / 16 / 19 -200 Sieve: 44.6	12.5-15	At 10.5' bgs: Dense silty clay layer (2" thick). SAND: Brownish grey; damp to moist; fine-grained; sub-angular; moderately sorted; loose; non-plastic; minor silt content. At 13.5' bgs: Dense clay lens (1" thick). At 14.5' bgs: Color change to dark brown. CLAY: Brownish orange heavily mottled with dark brown, orange, and orangish red; moist; stiff; high plasticity; trace silt content, increases with
] 1: - -			80	JKS-48_15-16.5 USCS: Sandy Lean Clay (CL) AL: 48 / 19 / 29 -200 Sieve: 58.9 JKS-48_19-20	15-16.5	depth; orange silt stringers. Non-cohesive grab sample collected from 15'-16.5' bgs. CLAYEY SILTY SAND: Brownish tan; very moist; loose to medium dense; slight plasticity; decreasing clay content with depth; occasional orange silt stringers. At 16.5' bgs: Wet. SAND: Orangish brown; very moist to wet; fine-grained; sub-angular;
475 -	0			USCS: Clayey Sand (SC) AL: 26 / 16 / 10 -200 Sieve: 48.7	19-20	moderately sorted; loose; non-plastic; minor silt content, decreases with depth; laminated with light grey clay to 19.25' bgs. Non-cohesive grab sample collected from 19'-20' bgs.



Proj. No. <u>0337367</u>	Boring/Well	ID <u>JKS</u>	S-48		Date Drilled	<u>2016-04-0</u> 6	
Project <u>Groundwate</u>	er Investigation	Owner_	Owner CPS Energy				
Location Calaveras F	Power Station - San Antonio	Boring T.	.D. <u>30.00</u>	o'	Boring Diam.	8.25 "	
N. Coord. <u>13659658.7</u>	<u>'8'</u> E. Coord. <u>2186490.78'</u>	Surface E	Elevation	493.7	71' <u>Ft M</u>	ISL Datum	
Screen: Type Sch. 4	0 PVC Diam	n. <u>2.00 "</u>	Length _	10.00 '	Slot Size	0.01 "	
Casing: Type Sch. 4	0 PVC Diam	n. <u>2.00 "</u>	Length _	18.50 '	Sump Length	_0'	
Top of Ca	asing Elevation 497.19 '		-		Stickup 3.48		
Depth to Water: 1. F	Ft. btoc <u>11.28</u> (<u>201</u>	6-05-31) 2.	Ft	()	
Drilling Company _Str	rata Core Services, LLC	Driller	Joseph F	Ray			
Drilling Method Ho	llow-Stem Auger	Log By	Nick Hou	utchens	<u> </u>		

JKS-48 DRILLING LOG

NOTES

STATE OF TEXAS WELL REPORT for Tracking #424212

Owner: CPS ENERGY

Owner Well #: JKS-48

Address:

PO BOX 2906

Grid #: 68-46-5

SAN ANTONIO, TX 78299

Well Location:

Calaveras Power Station

29° 19' 01" N

SAN ANTONIO, TX

Longitude:

Latitude:

098° 18' 08" W

Well County:

Bexar

Elevation:

494 ft. above sea level

Type of Work:

New Well

Proposed Use:

Monitor

Drilling Start Date: 4/4/2016

Drilling End Date: 4/8/2016

Diameter (in.)

Top Depth (ft.)

Bottom Depth (ft.)

Borehole:

8.25

0

30

Drilling Method:

Hollow Stem Auger

Borehole Completion:

Filter Packed

Top Depth (ft.)

Bottom Depth (ft.)

Filter Material

Size

Filter Pack Intervals:

16.5

20.5

Sand

20/40

Bottom Depth (ft.)

7 20020

Description (number of sacks & material)

Annular Seal Data:

Top Depth (ft.)

16.5

Bentonite 15 Bags/Sacks

Seal Method: Hand Mixed

Sealed By: Driller

Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Distance to Property Line (ft.): No Data

Method of Verification: No Data

Surface Completion:

Surface Slab Installed

Surface Completion by Driller

Water Level:

No Data

Packers:

No Data

Type of Pump:

No Data

Well Tests:

No Test Data Specified

Description (number of sacks & material)

Top Depth (ft.)

Bottom Depth (ft.)

Plug Information:

Bentonite

29.5

30

Strata Depth (ft.) Water Type

Water Quality: No Data No Data

Chemical Analysis Made: No.

Did the driller knowingly penetrate any strata which

contained injurious constituents?: No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the

driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in

the report(s) being returned for completion and resubmittal.

Company Information: Strata Core Services, LLC

112 S. Norwood Drive Hurst, TX 76053

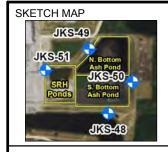
Driller Name: Joseph Ray License Number: 58794

Comments: No Data

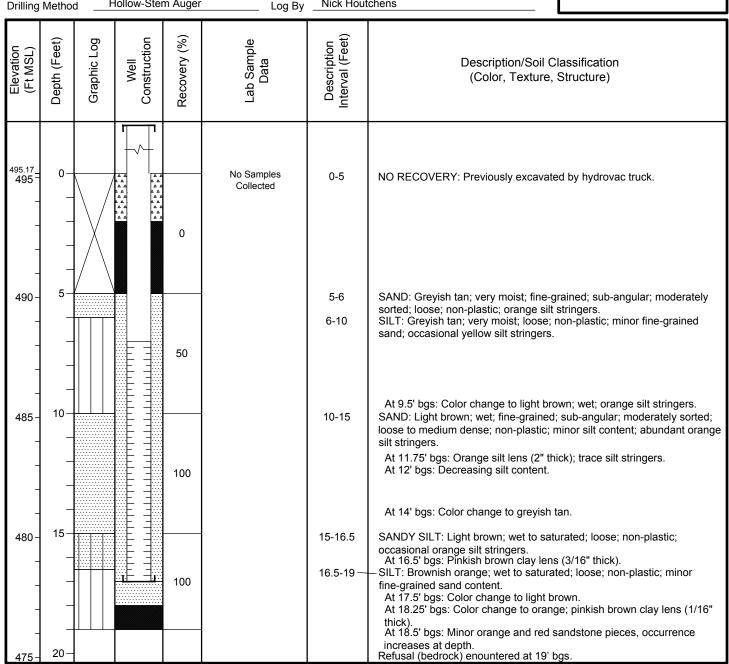
DESCRIPT	ION & COL	Lithology: OR OF FORMATION MATERIAL		BLANK	Casing PIPE & WELL		DATA	
Top (ft.)	Bottom (ft.)	Description	Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
0	5	ASH			New Plastic			
5	8	LT BRN CLAY	2	Riser	(PVC)	40	0	18.5
8	14	LT GRAY CLAY	2	Screen	New Plastic (PVC)	40 10	18.5	28.5
14	20	LT GRAY SAND						
20	30	BRN SILTY CLAY						

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.


Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880



Proj. No. 0337367 Boring/Well ID JKS-49 Date Drilled 2016-04-06
Project Groundwater Investigation Owner CPS Energy
Location Calaveras Power Station - San Antonio Boring T.D. 19.00 Boring Diam. 8.25 Boring Diam.
N. Coord. <u>13660519.40'</u> E. Coord. <u>2186229.15'</u> Surface Elevation <u>495.17'</u> <u>Ft. MSL</u> Datum
Screen: Type _ Sch. 40 PVC Diam 2.00 " Length 10.00 ' Slot Size
Casing: Type Sch. 40 PVC Diam. 2.00 " Length 7.00 ' Sump Length 0'
Top of Casing Elevation 498.63 ' Stickup 3.46 '
Depth to Water: 1. Ft. btoc <u>9.32</u> (<u>2016-05-31</u>) 2. Ft()
Drilling Company Strata Core Services, LLC Driller Joseph Ray
Drilling Method Hollow-Stem Auger Log By Nick Houtchens

JKS-49 DRILLING LOG

NOTES

Owner:	CPS	ENERGY		Owner Well #:	JKS-49	
Address:	1.7.7.35	OX 2906 ANTONIO, TX 782	299	Grid #:	68-46-5	
Well Location:	Calav	veras Power Statio		Latitude:	29° 19'	01" N
	SAN	ANTONIO, TX		Longitude:	098° 18'	08" W
Well County:	Bexa	r		Elevation:	495 ft. at	ove sea level
Type of Work:	New V	Vell		Proposed Use:	Monitor	
Orilling Start Dat	e: 4/4/	/2016 Drilling	g End Date: 4/8/20	16		
		Diameter (in	.) Тор	Depth (ft.)	Bottom De	epth (ft.)
Borehole:		8.25		0	19	
Orilling Method:		Hollow Stem Au	ger			
Borehole Comple	etion:	Filter Packed				
		Top Depth (ft.)	Bottom Depth (ft.)	Filter Materia	al	Size
ilter Pack Interv	als:	7	17	Sand		20/40
		Top Depth (ft.)	Bottom Depth (ft.)	Descripti	ion (number of	sacks & material)
nnular Seal Da	ta:	2	7	Ber	ntonite 2 Ba	igs/Sacks
Seal Meth	od: Ha	nd Mixed		Distance to Proper	ty Line (ft.):	No Data
Sealed	By: Dri	iller		stance to Septic Fie ncentrated contam		No Data
				Distance to Septi	c Tank (ft.):	No Data
				Method of \	Verification:	No Data
urface Complet	ion:	Surface Slab Ins	talled	Surfac	e Completi	on by Driller
Water Level:		No Data				
Packers:		No Data				
Type of Pump:		No Data				
Well Tests:		No Test Data Sp	ecified			
		Description	on (number of sacks & n	naterial) 7	Top Depth (ft.)	Bottom Depth (ft
Plug Information			Bentonite			

Strata Depth (ft.)

Water Type

Water Quality:

No Data

No Data

Chemical Analysis Made:

Did the driller knowingly penetrate any strata which

contained injurious constituents?:

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the

No

No

landowner or person having the well drilled was informed that such well must be

completed or plugged in such a manner as to avoid injury or pollution.

Certification Data:

The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information: Strata Core Services, LLC

112 S. Norwood Drive Hurst, TX 76053

Driller Name:

Joseph Ray

License Number:

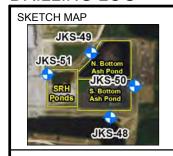
58794

Comments:

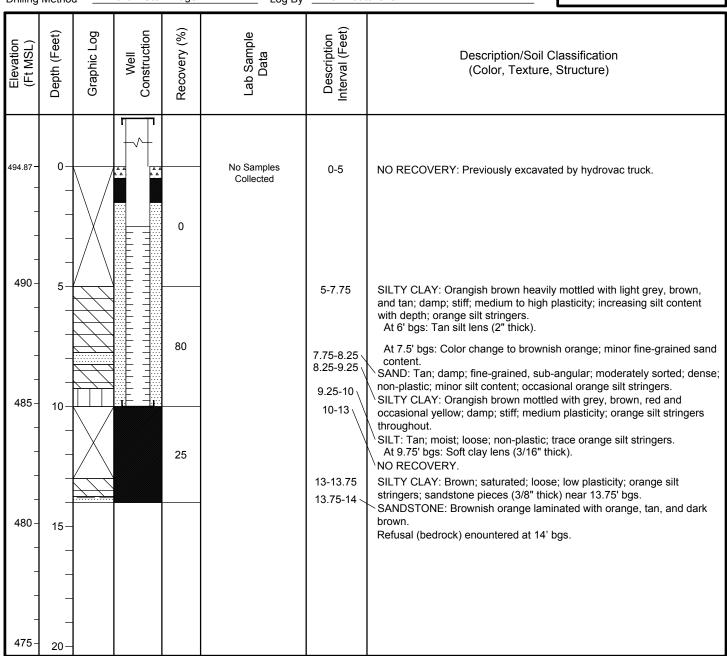
No Data

DESCRIPT		Lithology: OR OF FORMATION MATERIAL		BLANK	Casing PIPE & WELL		DATA	
Top (ft.)	Bottom (ft.)	Description	DIa (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
0	5	ASH		Dines	New Plastic	40		
5	8	LT BRN CLAY	2	Riser	(PVC)	40	0	7
8	14	LT GRAY CLAY	2	Screen	New Plastic (PVC)	40 10	7	17
14	19	LT GRAY SAND						

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY


TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.



Proj. No.	0337367	Boring/Well I	D JK	S-50		Date Drilled	2016-04-06
Project	Groundwater Investigation	<u> </u>	Owner_	CPS Ene	rgy		
Location	Calaveras Power Station -	San Antonio	Boring T	.D. <u>14.0</u>	0'	Boring Diam.	8.25 "
N. Coord.	13660122.87' E. Coord.	2186836.72'	Surface	Elevation	494.8	87 ' Ft. N	<u>ISL</u> Datum
Screen:	Type Sch. 40 PVC	Diam	2.00 "	Length _	7.50 '	Slot Size	0.01 "
Casing:	Type Sch. 40 PVC	Diam	. 2.00 "	Length _	2.50 '	Sump Length	_0'
	Top of Casing Elevation	1 <u>498.20 '</u>		_		Stickup 3.33	·
Depth to V	Vater: 1. Ft. btoc <u>11</u>	.76 (<u>2016</u>	6-05-31) 2.	Ft	()
Drilling Co	mpany _Strata Core Servi	ces, LLC	Driller _	Joseph	Ray		
Drilling Me	thod Hollow-Stem Aug	er	Log By	Nick Ho	utchens		

JKS-50 DRILLING LOG

NOTES

STATE OF TEXAS WELL REPORT for Tracking #424216 Owner: **CPS ENERGY** Owner Well #: JKS-50 Address: PO BOX 2906 Grid #: 68-46-5 SAN ANTONIO, TX 78299 Latitude: 29° 19' 01" N Well Location: Calaveras Power Station SAN ANTONIO, TX Longitude: 098° 18' 08" W Well County: Bexar Elevation: 489 ft. above sea level Type of Work: New Well Proposed Use: Monitor Drilling Start Date: 4/4/2016 Drilling End Date: 4/8/2016 Diameter (in.) Top Depth (ft.) Bottom Depth (ft.) Borehole: 8.25 0 14 Drilling Method: Hollow Stem Auger Borehole Completion: Filter Packed Top Depth (ft.) Bottom Depth (ft.) Filter Material Size Filter Pack Intervals: 1.5 10 Sand 20/40 Top Depth (ft.) Bottom Depth (ft.) Description (number of sacks & material) Annular Seal Data: 0.5 1.5 Bentonite 1 Bags/Sacks Seal Method: Hand Mixed Distance to Property Line (ft.): No Data Sealed By: Driller Distance to Septic Field or other concentrated contamination (ft.): No Data Distance to Septic Tank (ft.): No Data Method of Verification: No Data Surface Completion: Surface Slab Installed Surface Completion by Driller Water Level: No Data Packers: No Data Type of Pump: No Data Well Tests: No Test Data Specified

Plug Information:

Top Depth (ft.)

10

Description (number of sacks & material)

Bentonite

Bottom Depth (ft.)

14

Strata Depth (ft.) Water Type

Water Quality: No Data No Data

Chemical Analysis Made: No

Did the driller knowingly penetrate any strata which

contained injurious constituents?: No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the

driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in

the report(s) being returned for completion and resubmittal.

Company Information: Strata Core Services, LLC

112 S. Norwood Drive Hurst, TX 76053

Driller Name: Joseph Ray License Number: 58794

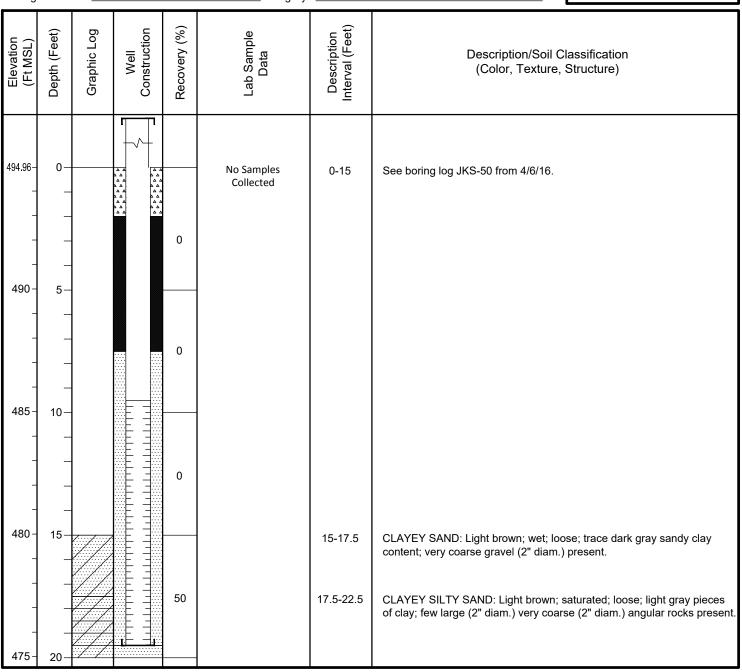
Comments: No Data

DESCRIPT	ION & COL	Lithology: OR OF FORMATION MATERIAL		BLANK	Casing CPIPE & WELL		DATA	
Top (ft.)	Bottom (ft.)	Description	Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
0	5	ASH		Di	New Plastic			
5	8	LT BRN CLAY	2	Riser	(PVC)	40	0	2.5
8	14	LT GRAY CLAY	2	Screen	New Plastic (PVC)	40 10	2.5	10
14	15	LT GRAY SAND						

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.



Proj. No.	0366643	Boring/Well I	D <u>JKS</u>	-50R		Date Drilled	<u>2016-10-0</u> 7
Project	Ground Water Investigation	- Phase II	Owner	CPS Energ	ду		
Location	Calaveras Power Station - S	San Antonio	Boring T.	D. <u>22.50</u>		Boring Diam.	8.25 "
N. Coord.	13660149.90' E. Coord	186841.92'	Surface E	levation _	494.9	<u>6' Ft.</u>	MSL Datum
Screen:	Type <u>Sch. 40 PVC</u>	Diam	. 2.00 "	Length	10.00 '	Slot Size _	0.01 "
Casing:	Type <u>Sch. 40 PVC</u>	Diam	. 2.00 "	Length	9.50 '	Sump Lengt	h <u>0'</u>
	Top of Casing Elevation	498.48 '			:	Stickup 3.52	2'
Depth to V	Vater: 1. Ft. btoc <u>12.6</u>	67 (2	016-05-21	_) 2.	Ft	()
Drilling Co	mnany Strata Core Servic	es. LLC	Driller	Ryan Spa	aust		
Drining Co	impairy	,	Dilliel	,			
Drilling Me	thod Hollow-Stem Auge	er	Log By	Andrew H	lenry		

JKS-50R DRILLING LOG

NOTES

Proj. No.	0366643	Boring/Well I	D <u>JK</u> S	S-50R		Date Drilled	<u>2016-10-0</u> 7
Project	Ground Water Investigation	n - Phase II	Owner_	CPS Ener	rgy		
Location	Calaveras Power Station -	San Antonio	Boring T.	.D. <u>22.50</u>	<u>) '</u>	Boring Diam.	8.25 "
N. Coord.	13660149.90' E. Coord.	186841.92'	Surface I	Elevation	494.9	96 ' <u>Ft. M</u>	MSL Datum
Screen:	Гуре <u>Sch. 40 PVC</u>	Diam	. 2.00 "	Length _	10.00 '	Slot Size	0.01 "
Casing:	Гуре <u>Sch. 40 PVC</u>	Diam	. 2.00 "	Length _	9.50 '	Sump Length	_0'
	Top of Casing Elevation	498.48 '			;	Stickup 3.52	<u> </u>
Depth to W	/ater: 1. Ft. btoc <u>12.</u>	67 (2	016-05-21) 2.	Ft	()
Drilling Cor	mnany Strata Core Servi	ces LLC	Driller	Ryan Sp	aust		
Drining Col	ilpairy		Dilliel _	,			
Drilling Me	thod Hollow-Stem Aug	er	Log By	Andrew	Henry		

JKS-50R DRILLING LOG

NOTES

Diming	Method		ionow-otci			Andrew	,
Elevation (Ft MSL)	Depth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
470 - 465 - 465 - 455 -	20 — — — — — — — — — — — — — — — — — — —			50		22-22.5	CLAYEY SAND: Brownish gray; dry to damp; loose. Boring terminated at 22.5' bgs.

STATE OF TEXAS WELL REPORT for Tracking #443567

Owner:

Calaveras Power Station

JKS-50R

68-46-5

Address:

12940 US 181

San Antonio, TX 78223

12940 US 181

San Antonio, TX 78223

Latitude:

Grid #:

Owner Well #:

29° 18' 28.4" N

Longitude:

098° 19' 01.91" W

Well County:

Bexar

Elevation:

No Data

Type of Work:

Well Location:

New Well

Proposed Use:

Monitor

Drilling Start Date: 10/7/2016

Drilling End Date: 10/7/2016

Diameter (in.)

Top Depth (ft.)

Bottom Depth (ft.)

Borehole:

8.25

0

19.5

Drilling Method:

Hollow Stem Auger

Borehole Completion:

Filter Packed

	Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size
Filter Pack Intervals:	7.5	19.5	Sand	20/40
	Top Depth (ft.)	Bottom Depth (ft.)	Description (number of	of sacks & material)
Annular Seal Data:	0	2	2 Cement 1 Bags/Sa	
	2	7.5	Bentonite 2 E	Bags/Sacks

Seal Method: Hand Mixed

Distance to Property Line (ft.): No Data

Sealed By: Driller

Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion:

Surface Slab Installed

Surface Completion by Driller

Water Level:

No Data

Packers:

No Data

Type of Pump:

No Data

Well Tests:

No Test Data Specified

Strata Depth (ft.) Water Type

Water Quality: No Data No Data

Chemical Analysis Made: No

Did the driller knowingly penetrate any strata which

contained injurious constituents?: No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the

driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in

the report(s) being returned for completion and resubmittal.

Company Information: Strata Core Services, LLC

No Data

112 S. Norwood Drive Hurst, TX 76053

Driller Name: William Fields License Number:

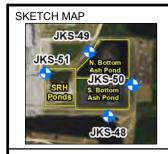
Apprentice Name: Ryan Spaust

Comments:

Lithology: Casing: BLANK PIPE & WELL SCREEN DATA DESCRIPTION & COLOR OF FORMATION MATERIAL Bottom Dla Description Top (ft.) Bottom (ft.) Material Top (ft.) Type Sch./Gage (in.) (ft.) 0 17.5 Clayey sand -light brown **New Plastic** 2 Riser 0 9.5 (PVC) Clayey silty sand - light 17.5 19.5 brown **New Plastic** 40 10 9.5 19.5 2 Screen (PVC)

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.


Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880 56033

Proj. No. <u>033736</u>	Boring/Well	D <u>JKS-51</u>	Date Drilled
Project Ground	dwater Investigation	Owner CPS E	nergy
Location Calave	ras Power Station - San Antonio	Boring T.D. 29	9.50 ' Boring Diam. <u>8.25 "</u>
N. Coord. <u>13660</u> 2	243.53' E. Coord. <u>2185630.39'</u>	Surface Elevatio	on <u>494.04 '</u> <u>Ft. MSL</u> Datum
Screen: Type S	ch. 40 PVC Dian	2.00 " Length	15.00 ' Slot Size0.01 "
Casing: Type S	ch. 40 PVC Dian	_2.00 " Length	
Тор	of Casing Elevation 496.92 '		Stickup2.88 '
Depth to Water: 1	. Ft. btoc <u>10.56</u> (<u>201</u>	<u>6-05-31</u>) 2.	. Ft)
Drilling Company	Strata Core Services, LLC	Driller Josep	oh Ray
Drilling Method	Hollow-Stem Auger	Log By Nick H	Houtchens

JKS-51 DRILLING LOG

NOTES

Drilling	Method	d <u>H</u>	lollow-Ster	n Auger	Log By	Nick Hout	cnens
Elevation (Ft MSL)	Depth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
494.04 -	0-				No Samples Collected	0-5	NO RECOVERY: Previously excavated by hydrovac truck.
490 - - -	5 -			0		5-6.5 6.5-10	SILTY CLAY: Light brown with occasional orange mottling; wet; soft; low plasticity; occasional gravel (1/16" thick).
- 485 - -	- - - 10-			60		10-15	SAND: Light brown; very moist; fine-grained; sub-angular; moderately sorted; medium dense; slight plasticity; minor silt and clay content. At 7.5' bgs: Clay lenses (up to 3/4" thick) to 8.5' bgs. At 8.5' bgs: Occasional orange silt stringers to 9.5' bgs. At 9' bgs: Clay lamina (1/16" thick) to 10' bgs. At 9.5' bgs: Wet. SILT: Light brown; wet; medium dense; low plasticity; laminated with grey clay (1/16" to 3/16" thick) throughout; minor fine-grained sand;
480-	-			100			orange silt stringers throughout. At 12.5' bgs: Sand lens (2" thick). At 13.5' bgs: Sand lens (2" thick); fractures in planar surfaces to 14.5' bgs. At 14' bgs: Occasional thin clay lamina to 15' bgs. At 14.5' bgs: Color change to light grey.
- - - 475-	15— — — —			100		15-17.75 17.75-18.25 18.25-19.75	CLAY: Pinkish grey; moist; medium stiff; low to medium plasticity; laminated with orange and grey silt (up to 3/4" thick) throughout. CLAY: Grey; moist; medium stiff; low plasticity; trace silt content; abundant orange silt stringers. / SILTY SAND: Light brown; wet to saturated; very fine to fine-grained; sub-angular; poorly sorted; loose; non-plastic. At 19.25' bgs: Pinkish grey clay lens (2" thick); thin red silt lens below clay; occasional orange silt stringers. / SAND: Light grey; wet; fine-grained; sub-angular; moderately sorted;
1	20-					19.75-26.5	loose; non-plastic; occasional orange silt stringers.

Project

Location

Proj. No. <u>0337367</u>

Environmental Resources Management

_ Boring/Well ID

-	DRILLING LOG
Date Drilled 2016-04-07	SKETCH MAP
nergy	JKS-49
.50 ' Boring Diam. <u>8.25 "</u>	JKS-51 N. Bottom
n <u>494.04 '</u> <u>Ft. MSL</u> Datum	SRH S. Bottom Ash Pond
15.00 ' Slot Size0.01 "	ovesu.

JKS-51

N. Coord. <u>13660243.53'</u> E. Coord. <u>2185630.39'</u> Surface Elevation <u>494.04'</u> Screen: Type Sch. 40 PVC

Casing: Type Sch. 40 PVC

Groundwater Investigation

______ Diam. 2.00 " Length 15.00 ' Slot Size _

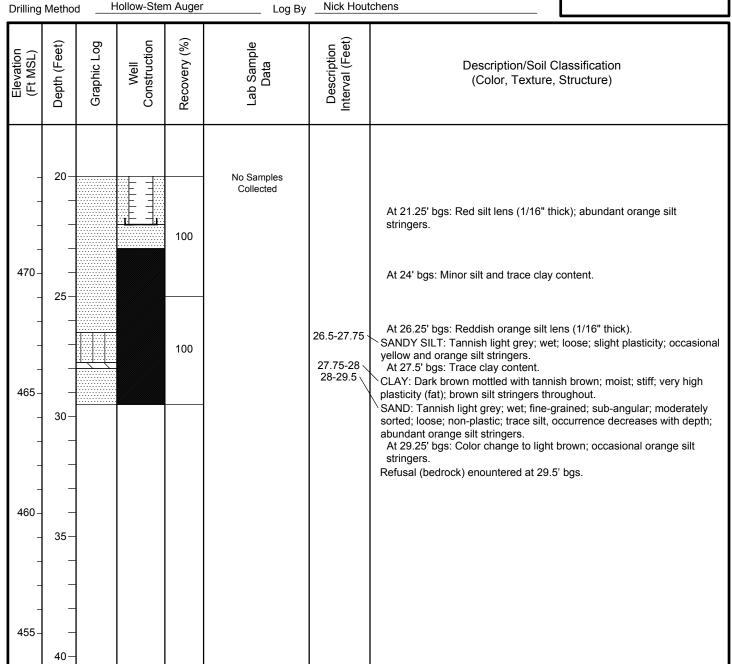
_____ Diam. <u>2.00 "</u> Length <u>7.00 '</u> Sump Length <u>0 '</u>

_JKS-51

Calaveras Power Station - San Antonio Boring T.D. 29.50 Boring Diam. 8.25 Boring Diam.

Owner CPS Energy

Top of Casing Elevation 496.92 '


Stickup __2.88 '____ Depth to Water: 1. Ft. btoc 10.56 (2016-05-31) 2. Ft. _____(_____)

Drilling Company

Strata Core Services, LLC Driller

Joseph Ray Log By _Nick Houtchens

NOTES

STATE OF TEXAS WELL REPORT for Tracking #424218 Owner: **CPS ENERGY** Owner Well #: JKS-51 Address: PO BOX 2906 Grid #: 68-46-5 SAN ANTONIO, TX 78299 Latitude: 29° 19' 01" N Well Location: Calaveras Power Station SAN ANTONIO, TX Longitude: 098° 18' 08" W Well County: Bexar Elevation: 491 ft. above sea level Type of Work: New Well Proposed Use: Monitor Drilling Start Date: 4/4/2016 Drilling End Date: 4/8/2016 Diameter (in.) Top Depth (ft.) Bottom Depth (ft.) Borehole: 8.25 0 29.5 Drilling Method: Hollow Stem Auger Borehole Completion: Filter Packed Top Depth (ft.) Bottom Depth (ft.) Filter Material Size Filter Pack Intervals: 5 23 Sand 20/40 Top Depth (ft.) Bottom Depth (ft.) Description (number of sacks & material) Annular Seal Data: 2 5 Bentonite 3 Bags/Sacks Seal Method: Hand Mixed Distance to Property Line (ft.): No Data Sealed By: Driller Distance to Septic Field or other concentrated contamination (ft.): No Data Distance to Septic Tank (ft.): No Data Method of Verification: No Data Surface Completion: Surface Slab Installed Surface Completion by Driller Water Level: No Data Packers: No Data Type of Pump: No Data Well Tests: No Test Data Specified Description (number of sacks & material) Top Depth (ft.) Bottom Depth (ft.) Plug Information: Bentonite 23 29.5

Strata Depth (ft.) Water Type

No Data No Data

> Chemical Analysis Made: No

Did the driller knowingly penetrate any strata which

contained injurious constituents?:

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the

driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in

the report(s) being returned for completion and resubmittal.

Company Information: Strata Core Services, LLC

> 112 S. Norwood Drive Hurst, TX 76053

Driller Name: Joseph Ray

License Number: 58794

Comments: No Data

Water Quality:

DESCRIPT	ION & COL	Lithology: OR OF FORMATION MATERIAL		BLANK	Casing PIPE & WELL	j: SCREEN	DATA	
Top (ft.)	Bottom (ft.)	Description	Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom
0	5	ASH	A. 105	24	New Plastic	l va		(ft.)
5	8	LT BRN CLAY	2	Riser	(PVC)	40	0	7
8	14	LT GRAY CLAY	2	Screen	New Plastic (PVC)	40 10	7	22
14	20	LT GRAY SAND			9-22			
20	24	BRN SITY CLAY						

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Proj. No. <u>0366643</u> Boring/Well ID <u>JKS-52</u> Date Drilled <u>2016-09-0</u> 1
Project Ground Water Investigation - Phase II Owner CPS Energy
Location Calaveras Power Station - San Antonio Boring T.D. 32.50 Boring Diam. 8.25 Boring Diam.
N. Coord. <u>13659683.26'</u> E. Coord. <u>2186139.05'</u> Surface Elevation <u>493.56'</u> <u>Ft. MSL</u> Datum
Screen: Type _ Sch. 40 PVC Diam 2.00 " Length 10.00 ' Slot Size
Casing: Type Sch. 40 PVC Diam. 2.00 Length 19.00 Sump Length 0'
Top of Casing Elevation 493.15 ' Stickup -0.41'
Depth to Water: 1. Ft. btoc <u>7.30</u> (<u>2016-05-21</u>) 2. Ft()
Drilling Company Strata Core Services, LLC Driller Ryan Spaust
Drilling Method Hollow-Stem Auger Log By Andrew Henry

JKS-52 DRILLING LOG

NOTES

Elevation (Ft MSL)	Depth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
493.56- - - -	0-		AB BA AA AA	0	No Samples Collected	0-5	NO RECOVERY: Previously excavated by hydrovac truck.
490 -	5 — — —			100		5-7 7-8 8-10	CLAYEY SILT: Orangish brown with red and light gray; damp; loose; slight plasticity; red nodules throughout. no odor. At 5' bgs: Red clay lense (1" thick). At 5.8' bgs: Light gray clay lensee. SILTY CLAY: Tan; damp. CLAYEY SILT: Gray with light gray and tan streaks; damp.
485 - - - - 480 -	10 — — — —			100		10-12 12-12.5 12.5-13.5 13.5-15	CLAY: Dark gray to brownish gray, mottled with light gray and bluish gray; damp; medium dense; slight plasticity. SILTY CLAY: Dark gray. SAND: Tan with light brownish gray; damp; loose; layered with iron-oxide staining, (1/4" thick). CLAYEY SILT: Tan with light brownish gray; damp; medium dense;
- - - 475 -	15 — — — —			100		15-19 19-20	non-plastic. SAND: Tan with gray clay stringers; damp; loose. SAND: Light tan; saturated; loose.

Proj. No. <u>0366643</u> Boring/Well ID <u>JKS-52</u> Date Drilled <u>2016-09-0</u> 1
Project Ground Water Investigation - Phase II Owner CPS Energy
Location Calaveras Power Station - San Antonio Boring T.D. 32.50 Boring Diam. 8.25 Boring Diam.
N. Coord. <u>13659683.26'</u> E. Coord. <u>2186139.05'</u> Surface Elevation <u>493.56'</u> <u>Ft. MSL</u> Datum
Screen: Type Sch. 40 PVC Diam. 2.00 " Length 10.00 ' Slot Size 0.01 "
Casing: Type Sch. 40 PVC Diam. 2.00 Length 19.00 Sump Length 0'
Top of Casing Elevation 493.15 ' Stickup -0.41'
Depth to Water: 1. Ft. btoc <u>7.30</u> (<u>2016-05-21</u>) 2. Ft)
Drilling Company Strata Core Services, LLC Driller Ryan Spaust
Drilling Method Hollow-Stem Auger Log By Andrew Henry

JKS-52 DRILLING LOG

NOTES

	Metrio				LOG By		
Elevation (Ft MSL)	Depth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
470 - 465 - 460 - 455 - 455 -	20-			100		20-24 24-25 25-30 30-31 31-32.5	SAND: Light orange and tan; damp; medium dense; no odor. At 21' bgs: Color change to tan with gray striations. At 22' bgs: Color change to tan; damp; and loose; At 22.5' bgs: Two gray striations layered within iron-oxide staining. CLAYEY SAND: Tan; saturated; medium dense. INTERBEDDED CLAY AND SAND: Gray and tan; damp; loose. At 27.5' bgs: Intermittent pinkish gray coloration of clay content to 30' bgs. SAND: Gray; damp; loose. INTERBEDDED CLAY AND SAND: Orange with pinkish gray; damp; loose; medium plasticity. Boring terminated at 32.5' bgs.
-	- 40 <i>-</i>						

STATE OF TEXAS WELL REPORT for Tracking #443571

Owner:

Calaveras Power Station

Owner Well #: JKS-52

Address:

12940 US 181

Grid #:

68-46-5

San Antonio, TX 78223

Latitude:

29° 18' 28.4" N

Well Location:

12940 US 181

San Antonio, TX 78223

Longitude:

098° 19' 01.91" W

Well County:

Bexar

Elevation:

No Data

Type of Work:

New Well

Proposed Use:

Monitor

Drilling Start Date: 9/1/2016

Drilling End Date: 9/1/2016

Diameter (in.)

Top Depth (ft.)

Bottom Depth (ft.)

Borehole:

8.25

0

29

Drilling Method:

Hollow Stem Auger

Borehole Completion:

Filter Packed

	Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size
Filter Pack Intervals:	7.5	19.5	Sand 20/4	
	Top Depth (ft.)	Bottom Depth (ft.)	Description (number of	of sacks & material)
Annular Seal Data:	0 2		Cement 1 Bags/Sacks	
	2	17	Bentonite 2 B	Bags/Sacks

Seal Method: Hand Mixed

Distance to Property Line (ft.): No Data

Sealed By: Driller

Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion:

Surface Slab Installed

Surface Completion by Driller

Water Level:

No Data

Packers:

No Data

Type of Pump:

No Data

Well Tests:

No Test Data Specified

Strata Depth (ft.)

Water Type

Water Quality:

No Data

No Data

Chemical Analysis Made:

Did the driller knowingly penetrate any strata which

contained injurious constituents?: No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data:

The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information:

Strata Core Services, LLC

112 S. Norwood Drive Hurst, TX 76053

Driller Name:

William Fields

License Number:

No

56033

Apprentice Name:

Ryan Spaust

Comments:

No Data

DESCRIPT	TION & COL	Lithology: OR OF FORMATION MATERIAL		BLANK	Casing CPIPE & WELL		DATA	
Top (ft.)	Bottom (ft.)	Description	Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
0	7	Clayey silt - orangish brown	2	Riser	New Plastic	40	0	19
7	15	Clayey silty - gray to brown	-	Nisei	(PVC)	40	0	19
15	19	Sand - tan with gray	2	Screen	New Plastic (PVC)	40 10	19	29
19	24	Sand - light orange and tan						
24	29	Clayey sand - tan						

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Proj. No.	0366643	Boring/Well I	D <u>JK</u>	S-53	Date Dr	illed _	<u>2016-09-0</u> 2
Project	Ground Water Investigation	n - Phase II	Owner_	CPS Energy			
Location	Calaveras Power Station -	San Antonio	Boring T	.D. <u>27.00</u> '	Boring [Diam	8.25 "
N. Coord.	<u>13659757.34'</u> E. Coord.	2185892.80'	Surface	Elevation	491.33 '	<u>Ft. MS</u>	<u>SL</u> Datum
Screen:	Type Sch. 40 PVC	Diam	. 2.00 "	Length10	.00 ' Slot Siz	ze	0.01 "
Casing:	Type Sch. 40 PVC	Diam	. 2.00 "	Length15	. <u>00 '</u> Sump l	Length	0'
	Top of Casing Elevation	494.74 '		-	Stickup	3.41 '	
Depth to V	Vater: 1. Ft. btoc <u>8.5</u>	0 (2	016-05-21	<u>1</u>) 2. Ft.		()
D.::::	mnany Strata Core Servi	ces IIC	D.:II	Ryan Spaus	·t		
Drilling Co	mpany Strata Core Servi	Jes, LLO	Driller _	Ttyan Opaus) L		
Drilling Me	ethod Hollow-Stem Aug	er	Log By	Andrew Her	nry		

JKS-53 DRILLING LOG

NOTES

				_			
Elevation (Ft MSL)	Depth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
491.33 <u>-</u> 490 - - -	0 0			0		0-5	NO RECOVERY: Previously excavated by hydrovac truck.
- - 485 - -	5 — —			100		5-7.5 7.5-10	SANDY SILTY CLAY: Tan to reddish gray; wet; low plasticity; no odor. At 6' bgs: Pockets of orange colored sand. SANDY CLAY: Orangish brown and gray; moist; low plasticity.
-	10-			100	JKS-53_10-12.5 USCS: Clayey Sand (SC) AL: 30 / 14 / 16	10-15	At 9' bgs: Pockets of orange colored sand. NO RECOVERY Cohesive sample (Shelby tube) collected from 10'-12' bgs.
480 -	-			0	-#200: 35.9 k: 5.34x10 ⁻⁶ JKS-53_12.5-15 USCS: Clayey Sand (SC) AL: 29 / 15 / 14 -#200: 48.8		Cohesive sample (Shelby tube) collected from 12.5'-15' bgs.
- 475 -	15 — —			100	k: 4.13x10 ⁻⁸	15-16 16-17.5	CLAYEY SAND: Tan; wet; loose; non-plastic; no odor. INTERBEDDED CLAY AND SAND: Orangish light brown sand interbedded with pinkish gray clay. At 16.5 - 17' bgs: Tan sand; damp.
-	- 20-			100		17.5-19.5 \ 19.5-20 \	CLAYEY SAND: Light brown and tannish gray; saturated; loose; slight plasticity. At 18.5-19' bgs: Tan sand. INTERBEDDED CLAY AND SAND: Tan sand interbedded with pinkish gray clay; layered with iron-oxide staining; damp; loose.

Proj. No. <u>0366643</u> Boring/Well ID <u>JKS-53</u> Date Drilled <u>2016-09-02</u>
Project Ground Water Investigation - Phase II Owner CPS Energy
Location Calaveras Power Station - San Antonio Boring T.D. 27.00 Boring Diam. 8.25 Boring Diam.
N. Coord. <u>13659757.34'</u> E. Coord. <u>2185892.80'</u> Surface Elevation <u>491.33'</u> <u>Ft. MSL</u> Datum
Screen: Type _ Sch. 40 PVC Diam 2.00 " Length _ 10.00 ' Slot Size
Casing: Type Sch. 40 PVC Diam. 2.00 Length 15.00 Sump Length 0'
Top of Casing Elevation 494.74 Stickup 3.41 Stickup
Depth to Water: 1. Ft. btoc <u>8.50</u> (<u>2016-05-21</u>) 2. Ft()
Drilling Company Strata Core Services, LLC Driller Ryan Spaust
Drilling Method Hollow-Stem Auger Log By Andrew Henry

JKS-53 DRILLING LOG

SKETCH MAP

JKS-49

JKS-69

NOTES

Drilling	Metrio	u	ioliow-stei		Log By	Andrew	
Elevation (Ft MSL)	Depth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
- 470 - -	20-			100	JKS-53_20-21 USCS: Clayey Sand (SC) AL: 27 / 14 / 13 - #200: 37.6	20-25 —	CLAYEY SAND: Gray with tannish orange staining; saturated; loose; non-plastic. Non-cohesive grab sample collected from 20'-21' bgs. At 22-22.5' bgs: Color change to orangish light brown; moist. At 22.5-25' bgs: Saturated.
- 465 - -	25 — —			100		25-27	SAND: Reddish brown mixed with light gray; damp; medium dense; non-plastic; dry and crumbly with depth. Boring terminated at 27' bgs.
460 - - - - - 455 -	30						
-	- 40 <i>-</i>						

STATE OF TEXAS WELL REPORT for Tracking #443589

Owner:

Calaveras Power Station

Owner Well #: **JKS-53**

Address:

12940 US 181

Grid #:

68-46-5

San Antonio, TX 78223

Latitude:

29° 18' 28.4" N

Well Location:

12940 US 181

San Antonio, TX 78223

Longitude:

098° 19' 01.91" W

Well County:

Bexar

Elevation:

No Data

Type of Work:

New Well

Proposed Use:

Monitor

Drilling Start Date: 9/2/2016

Drilling End Date: 9/2/2016

Diameter (in.)

Top Depth (ft.)

Bottom Depth (ft.)

Borehole:

8.25

0

25

Drilling Method:

Hollow Stem Auger

Borehole Completion:

Filter Packed

	Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size	
Filter Pack Intervals:	17	25	Sand	20/40	
	Top Depth (ft.)	Bottom Depth (ft.)	Description (number of	of sacks & material)	
Annular Seal Data:	0	2	Cement 1 Bags/Sacks		
	2	17	Bentonite 2 E	3ags/Sacks	

Seal Method: Hand Mixed

Distance to Property Line (ft.): No Data

Sealed By: Driller

Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion:

Surface Slab Installed

Surface Completion by Driller

Water Level:

No Data

Packers:

No Data

Type of Pump:

No Data

Well Tests:

No Test Data Specified

Strata Depth (ft.)

Water Type

Water Quality:

No Data

No Data

Chemical Analysis Made:

Did the driller knowingly penetrate any strata which

contained injurious constituents?: No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data:

The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information:

Strata Core Services, LLC

112 S. Norwood Drive Hurst, TX 76053

Driller Name:

William Fields

License Number:

No

56033

Apprentice Name:

Ryan Spaust

Comments:

No Data

DESCRIPT		Lithology: OR OF FORMATION MATERIAL	Casing: BLANK PIPE & WELL SCREEN DATA							
Top (ft.)	Bottom (ft.)	Description	Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)		
0	7	Clayey silt - orangish brown	2	Riser	New Plastic	40	0	15		
7	15	Clayey silty - gray to brown	-	14361	(PVC)	40				
15	19	Sand - tan with gray	2	Screen	New Plastic (PVC)	40 10	15	25		
19	23	Sand - light orange and tan								
23	25	Sand - reddish brown								

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

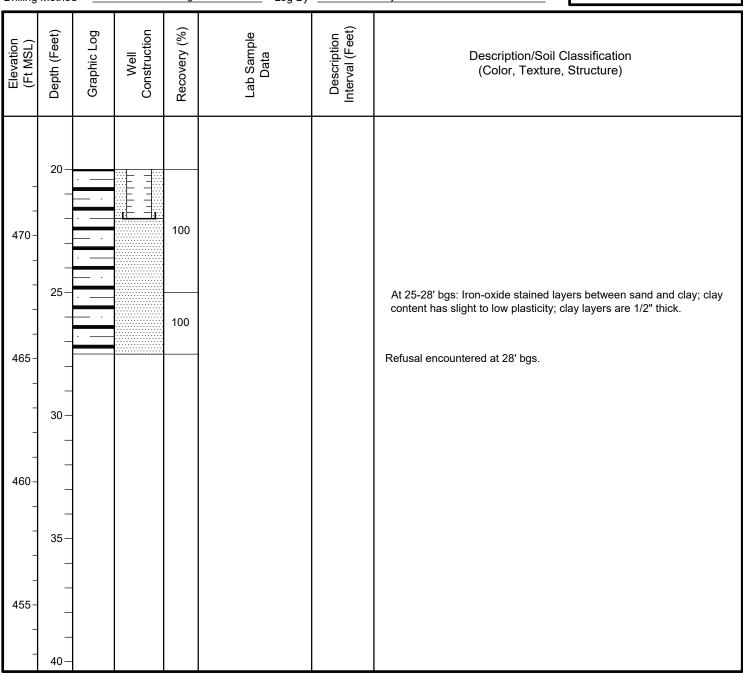
Please include the report's Tracking Number on your written request.

Proj. No.	0366643	Boring/Well I	D <u>JK</u>	S-54	Date Drilled	<u>2016-09-0</u> 2		
Project	Ground Water Investigation	n - Phase II	Owner_	CPS Energy				
Location	Calaveras Power Station -	San Antonio_	Boring T	.D. <u>27.50 '</u>	Boring Diam.	8.25 "		
N. Coord.	13659753.34' E. Coord.	2185641.96'	Surface	Elevation <u>492</u>	.69 ' <u>Ft. N</u>	<u>ISL</u> Datum		
Screen:	Гуре <u>Sch. 40 PVC</u>	Diam	. 2.00 "	Length10.00 '	Slot Size	0.01 "		
Casing:	Гуре <u>Sch. 40 PVC</u>	Diam	. 2.00 "	Length12.00 '	Sump Length	_0'		
	Top of Casing Elevation	496.40 '		-	Stickup 3.71	i 		
Depth to W	/ater: 1. Ft. btoc <u>10.</u>	79 (2	016-05-21	<u>1</u>) 2. Ft	()		
Drilling Company Strata Core Services, LLC Driller Ryan Spaust								
Drilling Me	thod Hollow-Stem Aug	er	Log By	Andrew Henry				

JKS-54 DRILLING LOG

NOTES

Elevation (Ft MSL)	Depth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
492.69- - - 490-	0-			0		0-5	NO RECOVERY: Previously excavated by hydrovac truck.
- - - 485 - -	5			100		5-5.8 5.8-7.2 7.2-8 8-11.5	CLAYEY SILT: Orangish brown with red; damp; loose; non-plastic; no odor. At 5.8' bgs: White chalky material. CLAYEY SAND: Light brown to tan; damp. INTERBEDDED CLAY AND SAND: Gray clay laminations (1" thick). CLAYEY SAND: Orangish brown; medium dense; non-plastic.
- 480 - - -	15			100	JKS-54_13-14 USCS: Silty Clayey Sand (SC-SM) AL: 22 / 15 / 7 - #200: 33.5	11.5-12.5 12.5-15 15-27.5	At 10.8' bgs: Tan; saturated; and loose. INTERBEDDED CLAY AND SAND: Tan sand interbedded with light pinkish gray clay; damp; clay laminations are 1/4"-1/2" thick. CLAYEY SAND: Tan; wet to saturated; loose; non-plastic. Non-cohseive grab sample collected from 13'-14' bgs. At 13.2-14.2' bgs: Saturated. At 14.9' bgs: Single thin (1" thick) clay layer.
- 475- - -	20-			100			NTERBEDDED CLAY AND SAND: Tan fine grained sand and light pinkish gray clay; damp.



Proj. No.	0366643	Boring/Well I	D <u>JK</u> S	S-54	Date Drilled	<u>2016-09-0</u> 2			
Project	Ground Water Investigation	n - Phase II	Owner_	CPS Energy					
Location	Calaveras Power Station -	San Antonio	Boring T	.D. <u>27.50 '</u>	Boring Diam.	8.25 "			
N. Coord.	<u>13659753.34'</u> E. Coord.	2185641.96'	Surface	Elevation <u>492</u>	.69 ' <u>Ft. N</u>	//SL Datum			
Screen:	Type <u>Sch. 40 PVC</u>	Diam	. 2.00 "	Length10.00 '	Slot Size	0.01 "			
Casing:	Type Sch. 40 PVC	Diam	. 2.00 "	Length12.00 '	Sump Length	_0'			
	Top of Casing Elevation	496.40 '		-	Stickup 3.71	<u> </u>			
Depth to W	Vater: 1. Ft. btoc <u>10.</u>	79 (2	016-05-21	<u>1</u>) 2. Ft	()			
Drilling Co	Drilling Company Strata Core Services, LLC Driller Ryan Spaust								
Drilling Method Hollow-Stem Auger Log By Andrew Henry									

JKS-54 DRILLING LOG

NOTES

STATE OF TEXAS WELL REPORT for Tracking #443590

Owner:

Calaveras Power Station

JKS-54

Address:

12940 US 181

Grid #:

68-46-5

San Antonio, TX 78223

29° 18' 28.4" N

Well Location:

12940 US 181

San Antonio, TX 78223

Longitude:

Latitude:

Owner Well #:

Well County:

098° 19' 01.91" W

Bexar

Elevation:

No Data

Type of Work:

New Well

Proposed Use:

Monitor

Drilling Start Date: 9/2/2016

Drilling End Date: 9/2/2016

Diameter (in.)

Top Depth (ft.)

Bottom Depth (ft.)

Borehole:

8.25

0

22

Drilling Method:

Hollow Stem Auger

Borehole Completion:

Filter Packed

	Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size
Filter Pack Intervals:	10	22	Sand	20/40
	Top Depth (ft.)	Bottom Depth (ft.)	Description (number o	f sacks & material)
Annular Seal Data:	0	2	Cement 1 Ba	igs/Sacks
	2	10	Bentonite 2 B	ags/Sacks

Seal Method: Hand Mixed

Distance to Property Line (ft.): No Data

Sealed By: Driller

Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion:

Surface Slab Installed

Surface Completion by Driller

Water Level:

No Data

Packers:

No Data

Type of Pump:

No Data

Well Tests:

No Test Data Specified

Strata Depth (ft.)

Water Type

Water Quality:

No Data

No Data

Chemical Analysis Made:

Did the driller knowingly penetrate any strata which

contained injurious constituents?: No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data:

The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information:

Strata Core Services, LLC

112 S. Norwood Drive Hurst, TX 76053

Driller Name:

William Fields

License Number: 5

No

56033

Apprentice Name:

Ryan Spaust

Comments:

No Data

DESCRIPT		Lithology: OR OF FORMATION MATERIAL	Casing: BLANK PIPE & WELL SCREEN DATA							
Top (ft.)	Bottom (ft.)	Description	Dla (in.)	Type	Material	Sch./Gage	Top (ft.)	Bottom (ft.)		
0	7	Clayey silt - orangish brown		Riser	New Plastic	40	0	12		
7	15	Clayey silty - gray to brown	2	Moci	(PVC)	40	Ü			
15	19	Sand - tan with gray	2	Screen	New Plastic (PVC)	40 10	12	22		
19	22	Sand - light orange and tan								

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Proj. No. <u>0366643</u>	Boring/Well ID	JKS	-55		Date Drilled	<u>2016-09-0</u> 6				
Project Ground Water Investigation -	Ground Water Investigation - Phase II Owner CPS Energy									
Location Calaveras Power Station - Sa	n Antonio_	Boring T.I	D. <u>25.00</u>	0'	Boring Diam.	8.25 "				
N. Coord. <u>13659749.76'</u> E. Coord. <u>21</u>	86840.46'	Surface E	Elevation	490.1	13 ' <u>Ft. N</u>	<u>//SL</u> Datum				
Screen: Type Sch. 40 PVC	Diam.	2.00 "	Length _	10.00 '	Slot Size	0.01 "				
Casing: Type Sch. 40 PVC	Diam.	2.00 "	Length _	15.00 '	Sump Length	0'				
Top of Casing Elevation _4	193.81 '				Stickup 3.68	<u> </u>				
Depth to Water: 1. Ft. btoc <u>8.36</u>	(20	016-05-21	_) 2.	Ft	()				
Drilling Company Strata Core Services	Drilling Company Strata Core Services, LLC Driller Ryan Spaust									
Drilling Method Hollow-Stem Auger		Log By _	Andrew	Henry						

JKS-55 DRILLING LOG

NOTES

	Method	1	ollow-Ster		Log By	Andrew n	,
Elevation (Ft MSL)	Depth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
490.13= - -	0 —, —		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		No Samples Collected	0-5	NO RECOVERY: Previously excavated by hydrovac truck.
- 485 - -	5—; —			0		5-11.5	NO RECOVERY: Moderately to highly cemented sand.
- - 480 - -	- 10 - -			0		11.5-12.5	NO RECOVERY: Cuttings are saturated; clayey silt material.
- - - 475-	_ _ _ 15 _			0		12.5-13.5 13.5-18.5	SANDY CLAY: Dark olive gray; damp; soft; non-plastic. CLAYEY SAND: Tannish gray with trace iron-oxide staining; damp; loose; non-plastic. At 15' bgs: White chalky material (1" thick); wet.
-	- - - - 20 -			100		18.5-19.8 19.8-20	At 15.5-17.5' bgs: Clayey sand mixed with some gravel. At 16.5' bgs: White chalky layer (1/2" thick). At 17.5' bgs: White chalky layer (1/2" thick). At 17.5-18.5' bgs: Saturated; tan clayey sand with trace gravel. SAND: Gray; wet; fine grained. SAND: Gray; very dense; moderately to highly cemented.

Proj. No. <u>0366643</u> Bor	ng/Well ID <u>JKS-55</u>	Date Drilled2016-09-06
Project Ground Water Investigation - Pha	se II Owner CPS Energy	
Location Calaveras Power Station - San A	ntonio Boring T.D. <u>25.00 '</u> E	Boring Diam. <u>8.25 "</u>
N. Coord. <u>13659749.76'</u> E. Coord. <u>2186</u>	340.46' Surface Elevation <u>490.13</u>	<u>Ft. MSL</u> Datum
Screen: Type Sch. 40 PVC	Diam. <u>2.00 "</u> Length <u>10.00 '</u>	Slot Size0.01 "
Casing: Type Sch. 40 PVC	Diam. <u>2.00 "</u> Length <u>15.00 '</u>	Sump Length0 '
Top of Casing Elevation 493	<u>81'</u> S	tickup3.68 '
Depth to Water: 1. Ft. btoc 8.36	(<u>2016-05-21</u>) 2. Ft	()
Drilling Company Strata Core Services, LI	.C Driller Ryan Spaust	
Drilling Method Hollow-Stem Auger	Log By Andrew Henry	

JKS-55 DRILLING LOG

NOTES

	Wictio				Log by		
Elevation (Ft MSL)	Depth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
470 - -	20 —					20-21 21-22.5	SANDY CLAY: Gray; damp; soft; slight plasticity. INTERBEDDED CLAY AND SAND: Fine grained tan sand interbedded with pinkish gray clay; damp.
- - 465 - -	_ _ 25			100		22.5-23.5 23.5-25	CLAYEY SAND: Tan; trace gravel; one large piece of sandstone (>1" thick). SAND: Pinkish gray; fine grained; damp; very thin layers of iron-oxide staining. Boring terminated at 25' bgs.
460 -	30-						
- - 455 -	- - 35-						
-	- - 40-						

STATE OF TEXAS WELL REPORT for Tracking #443591

Owner: Calaveras Power Station Owner Well #: **JKS-55**

Address:

12940 US 181

Grid #:

68-46-5

San Antonio, TX 78223

Latitude:

29° 18' 28.4" N

Well Location: 12940 US 181

San Antonio, TX 78223

Longitude:

098° 19' 01.91" W

Well County:

Bexar

Elevation:

No Data

Type of Work:

New Well

Proposed Use:

Monitor

Drilling Start Date: 9/6/2016

Drilling End Date: 9/6/2016

Diameter (in.)

Top Depth (ft.)

Bottom Depth (ft.)

Borehole:

8.25

0

25

Drilling Method:

Hollow Stem Auger

Borehole Completion:

Filter Packed

	Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size
Filter Pack Intervals:	12	25	Sand	20/40
	Top Depth (ft.)	Bottom Depth (ft.)	Description (number of	of sacks & material)
Annular Seal Data:	0	2	Cement 1 Bags/Sacks	
	2	12	Bentonite 2 B	Bags/Sacks

Seal Method: Hand Mixed

Distance to Property Line (ft.): No Data

Sealed By: Driller

Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion:

Surface Slab Installed

Surface Completion by Driller

Water Level:

No Data

Packers:

No Data

Type of Pump:

No Data

Well Tests:

No Test Data Specified

Strata Depth (ft.)

Water Type

Water Quality:

No Data

No Data

Chemical Analysis Made:

Did the driller knowingly penetrate any strata which

contained injurious constituents?:

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data:

The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information:

Strata Core Services, LLC

112 S. Norwood Drive Hurst, TX 76053

Driller Name:

William Fields

License Number: 50

No

No

56033

Apprentice Name:

Ryan Spaust

Comments:

No Data

DESCRIPT	Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL				Casing: BLANK PIPE & WELL SCREEN DATA							
Top (ft.)	Bottom (ft.)	Description	Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)				
0	7	Clayey silt - orangish brown	2	Riser	New Plastic	40	0	9.00				
7	15	Clayey silty - gray to brown	-	Kisei	(PVC)	22.7	0	15				
15	19	Sand - tan with gray	2	Screen	New Plastic (PVC)	40 10	15	25				
19	23	Sand - light orange and tan										
23	25	Sand - reddish brown										

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

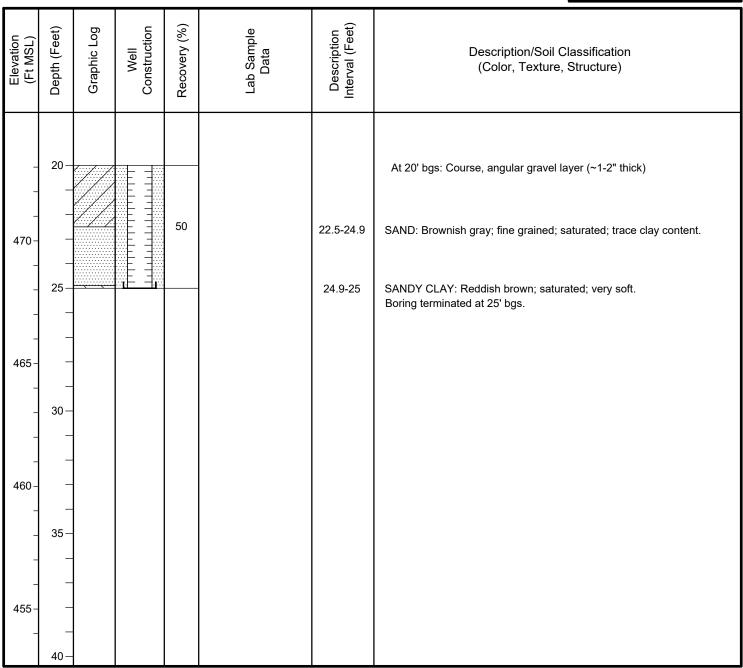
Please include the report's Tracking Number on your written request.

Proj. No. <u>0366643</u> Boring/Well ID <u>JKS-56</u> Date Drilled <u>2016-09-0</u> 6
Project Ground Water Investigation - Phase II Owner CPS Energy
Location Calaveras Power Station - San Antonio Boring T.D. 25.00 'Boring Diam. 8.25 "
N. Coord. <u>13660382.47'</u> E. Coord. <u>2186847.61'</u> Surface Elevation <u>493.07'</u> <u>Ft. MSL</u> Datum
Screen: Type _ Sch. 40 PVC Diam 2.00 " Length _ 15.00 ' Slot Size
Casing: Type Sch. 40 PVC Diam. 2.00 Length 10.00 Sump Length 0'
Top of Casing Elevation 496.66 ' Stickup 3.59 '
Depth to Water: 1. Ft. btoc <u>11.20</u> (<u>2016-05-21</u>) 2. Ft()
Drilling Company Strata Core Services, LLC Driller Ryan Spaust
Drilling Method Hollow-Stem Auger Log By Andrew Henry

JKS-56 DRILLING LOG

NOTES

			-		-		
Elevation (Ft MSL)	Depth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
493.07=	0-			0	No Samples Collected	0-5	NO RECOVERY: Previously excavated by hydrovac truck.
490 -	5- 5-			100	0	5-5.5 5.5-7 7-7.5 7.5-9.5	SANDY CLAY: Reddish gray; damp; stiff; non-plastic. At 5.5' bgs: Gray sandstone piece (>1" thick). SAND: Light orangish brown; fine grained; damp; loose. At 6.25' bgs: Color changes to tannish gray with some orangish brown. SANDY CLAY: Orange; damp; stiff to very stiff; non-plastic. CLAYEY SILT: Orangish tan; saturated; loose; non-plastic; mixed with some gravel and trace pockets of gray, fine grained sand.
- - 480 -	10-			15		9.5-10 10-13 13-22.5	CLAYEY SILTY SAND: Orangish tan; saturated; loose; non-plastic. NO RECOVERY CLAYEY SAND: Tan; fine grained; saturated; loose; non-plastic.
- - 475 - -	15- - - - - 20-			50			At 15' bgs: Small pocket of gray, fine grained, loose sand (1" thick). At 16' bgs: Coarse, angular gravel layer (~1-2" thick)



Proj. No. <u>0366643</u> Boring/Well ID <u>JKS-56</u> Date Drilled <u>2016-09-0</u> 6
Project Ground Water Investigation - Phase II Owner CPS Energy
Location Calaveras Power Station - San Antonio Boring T.D. 25.00 ' Boring Diam. 8.25 "
N. Coord. <u>13660382.47'</u> E. Coord. <u>2186847.61'</u> Surface Elevation <u>493.07'</u> <u>Ft. MSL</u> Datum
Screen: Type _ Sch. 40 PVC Diam 2.00 " Length _ 15.00 ' Slot Size
Casing: Type Sch. 40 PVC Diam. 2.00 Length 10.00 Sump Length 0'
Top of Casing Elevation 496.66 ' Stickup 3.59 '
Depth to Water: 1. Ft. btoc <u>11.20</u> (<u>2016-05-21</u>) 2. Ft()
Drilling Company Strata Core Services, LLC Driller Ryan Spaust
Drilling Method Hollow-Stem Auger Log By Andrew Henry

JKS-56 DRILLING LOG

NOTES

STATE OF TEXAS WELL REPORT for Tracking #443592

Owner:

Calaveras Power Station

Owner Well #: **JKS-56**

Address:

12940 US 181

Grid #:

68-46-5

San Antonio, TX 78223

29° 18' 28.4" N

Well Location:

12940 US 181

San Antonio, TX 78223

Longitude:

Latitude:

098° 19' 01.91" W

Well County:

Bexar

Elevation:

No Data

Type of Work:

New Well

Proposed Use:

Monitor

Drilling Start Date: 9/6/2016

Drilling End Date: 9/6/2016

Diameter (in.)

Top Depth (ft.)

Bottom Depth (ft.)

Borehole:

8.25

0

25

Drilling Method:

Hollow Stem Auger

Borehole Completion:

Filter Packed

	Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size	
Filter Pack Intervals:	8	25	Sand	20/40	
	Top Depth (ft.)	Bottom Depth (ft.)	Description (number of	of sacks & material)	
Annular Seal Data:	0	2	Cement 1 Bags/Sacks		
	2	8	Bentonite 2 B	Bags/Sacks	

Seal Method: Hand Mixed

Distance to Property Line (ft.): No Data

Sealed By: Driller

Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion:

Surface Slab Installed

Surface Completion by Driller

Water Level:

No Data

Packers:

No Data

Type of Pump:

No Data

Well Tests:

No Test Data Specified

Strata Depth (ft.)

Water Type

Water Quality:

No Data

No Data

Chemical Analysis Made:

Did the driller knowingly penetrate any strata which

contained injurious constituents?:

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data:

The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information:

Strata Core Services, LLC

112 S. Norwood Drive Hurst, TX 76053

Driller Name:

William Fields

License Number: 56033

No

No

Apprentice Name:

Ryan Spaust

Comments:

No Data

DESCRIPT	TION & COL	Lithology: OR OF FORMATION MATERIAL	Casing: BLANK PIPE & WELL SCREEN DATA					
Top (ft.)	Bottom (ft.)	Description	DIa (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
0	7	Clayey silt - orangish brown	2	Riser	New Plastic	40	0	10
7	15	Clayey silty - gray to brown			(PVC)			
15	19	Sand - tan with gray	2	Screen	New Plastic (PVC)	40 10	10	25
19	23	Sand - light orange and tan						
23	25	Sand - reddish brown						

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Proj. No. <u>0366643</u> Boring/Well ID <u>JKS-57</u> Date Drilled <u>2016-09-0</u> 7
Project Ground Water Investigation - Phase II Owner CPS Energy
Location <u>Calaveras Power Station - San Antonio</u> Boring T.D. <u>27.50 '</u> Boring Diam. <u>0.00 "</u>
N. Coord. <u>13668235.72'</u> E. Coord. <u>2187486.38'</u> Surface Elevation <u>503.83'</u> <u>Ft. MSL</u> Datum
Screen: Type _ Sch. 40 PVC Diam 2.00 " Length _ 15.00 ' Slot Size
Casing: Type Sch. 40 PVC Diam. 2.00 Length 12.00 Sump Length 0'
Top of Casing Elevation 506.91' Stickup 3.08'
Depth to Water: 1. Ft. btoc <u>20.07</u> (<u>2016-05-21</u>) 2. Ft)
Drilling Company Strata Core Services, LLC Driller Ryan Spaust
Drilling Method Hollow-Stem Auger Log By Andrew Henry

JKS-57 DRILLING LOG

NOTES

Drilling	Wictifoc	<u> </u>	ollow-Ster		Log By	Andrew	
Elevation (Ft MSL)	Depth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
503.83- - -	0 -, -				No Samples Collected	0-5	NO RECOVERY: Previously excavated by hydrovac truck.
500 - - - -	5 			0		5-8	CLAYEY SILT: Dark brown; damp; loose to medium dense; very slight plasticity; rootlets present.
- 495 - -	10 —			100		8-12.2	CLAYEY SAND: Orangish brown with trace gray and iron-oxide staining; damp; loose to medium dense; slight plasticity; rootlets present. At 10' bgs: Color becomes grayish tan mottled with yellow iron-oxide staining.
- 490 - - -	 15			100		12.2-14 14-15 15-25	SANDSTONE: Magenta red with orangish yellow and gray; damp; several pieces of reddish brown nodules (>1" thick) surrounded by yellow sandy clay. SANDY CLAY: Orangish yellow and gray; damp; slight plasticity; gray and orangish yellow striations of sandy clay; white crystalline structures with medium grained sand throughout. INTERBEDDED CLAY AND SAND: Gray with yellow and iron-oxide staining; dry; soft; medium plasticity.
- - 485 - -	- - - 20-			100			At 15-16' bgs: Mostly sand and iron-oxide staining. At 16-17.5' bgs: Mostly gray clay. At 17.5-18.5' bgs: Mostly sand with some yellow and trace iron-oxide staining. At 18.5-20' bgs: Mostly sand with some iron-oxide staining.

Proj. No. <u>0366643</u> Boring/Well ID <u>JKS-57</u> Date Drilled <u>2016-09-0</u> 7								
Project Ground Water Investigation - Phase II Owner CPS Energy								
Location <u>Calaveras Power Station - San Antonio</u> Boring T.D. <u>27.50 '</u> Boring Diam. <u>0.00 "</u>								
N. Coord. <u>13668235.72'</u> E. Coord. <u>2187486.38'</u> Surface Elevation <u>503.83'</u> <u>Ft. MSL</u> Datum								
Screen: Type _ Sch. 40 PVC Diam 2.00 " Length _ 15.00 ' Slot Size								
Casing: Type Sch. 40 PVC Diam. 2.00 Length 12.00 Sump Length 0'								
Top of Casing Elevation 506.91' Stickup 3.08'								
Depth to Water: 1. Ft. btoc <u>20.07</u> (<u>2016-05-21</u>) 2. Ft()								
Drilling Company Strata Core Services, LLC Driller Ryan Spaust								
Drilling Method Hollow-Stem Auger Log By Andrew Henry								

JKS-57 DRILLING LOG

NOTES

Drilling Method _	Hollow-Stem Aug	er Log By	_ Andrew H	eilly
Elevation (Ft MSL) Depth (Feet) Graphic Log	Well Construction Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
480 - 25 - 30	100		25-25.5 25.5-27 27-27.5	At 20-21' bgs: Mostly sand with yellow and trace iron-oxide staining. At 21-21.5' bgs: 2" thick layer of reddish brown, hard-packed sand; 4" thick layer of tan, very fine grained, loose sand. At 21.5-25' bgs: Mostly dark gray clay; At 22.5' bgs: Reddish brown coloration; At 24-25' bgs: Color is brownish gray with redox stippling. SAND: Gray; fine grained; dry; medium dense; low plasticity. At 25.5' bgs: Very thin (1/8" thick) brownish red coloration. INTERBEDDED CLAY AND SAND: Brownish gray clay interbedded with fine grained sand; dense; hard-packed. At 26.6' bgs: Thin, tan, dry, very fine grained, sand. SAND: Highly cemented; reddish brown nodules present. Refusal encountered at 27.5' bgs.

Owner:

Calaveras Power Station

Owner Well #: **JKS-57**

Address:

12940 US 181

San Antonio, TX 78223

68-46-5

Latitude:

Grid #:

29° 18' 28.4" N

Well Location:

12940 US 181

San Antonio, TX 78223

Longitude:

098° 19' 01.91" W

Well County:

Bexar

Elevation:

No Data

Type of Work:

New Well

Proposed Use:

Monitor

Drilling Start Date: 9/7/2016

Drilling End Date: 9/7/2016

Diameter (in.)

Top Depth (ft.)

Bottom Depth (ft.)

Borehole:

8.25

0

27

Drilling Method:

Hollow Stem Auger

Borehole Completion:

Filter Packed

	Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size
Filter Pack Intervals:	10	27	Sand 20/40	
	Top Depth (ft.)	Bottom Depth (ft.)	Description (number o	f sacks & material)
Annular Seal Data:	0	2	Cement 1 Ba	gs/Sacks
	2	10	Bentonite 2 B	ags/Sacks

Seal Method: Hand Mixed

Distance to Property Line (ft.): No Data

Sealed By: Driller

Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion:

Surface Slab Installed

Surface Completion by Driller

Water Level:

No Data

Packers:

No Data

Type of Pump:

No Data

Well Tests:

Water Type

Water Quality:

No Data

No Data

Chemical Analysis Made:

Did the driller knowingly penetrate any strata which

contained injurious constituents?:

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data:

The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information:

Strata Core Services, LLC

112 S. Norwood Drive Hurst, TX 76053

Driller Name:

William Fields

License Number: 56033

No

No

Apprentice Name:

Ryan Spaust

Comments:

No Data

DESCRIPT	Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL			Casing: BLANK PIPE & WELL SCREEN DATA						
Top (ft.)	Bottom (ft.)	Description	Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)		
0	7	Clayey silt - orangish brown		Riser	New Plastic	40	0	12		
7	15	Clayey silty - gray to brown			(PVC)					
15	19	Sand - tan with gray	2	Screen	New Plastic (PVC)	40 10	12	27		
19	23	Sand - light orange and tan								
23	27	Sand - reddish brown								

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

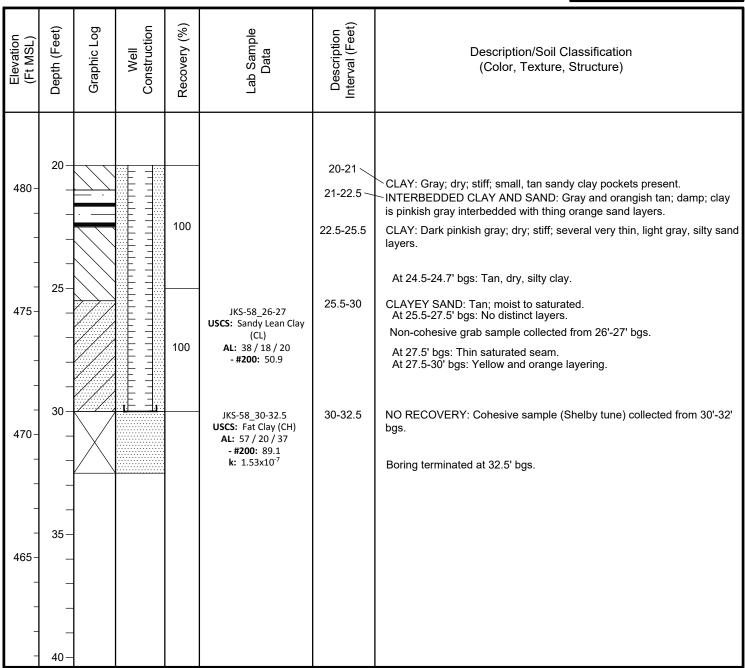
Please include the report's Tracking Number on your written request.

Proj. No.	0366643	Boring/Well I	D JKS	S-58	Date Drilled	2016-09-07
Project	Ground Water Investigation	n - Phase II	Owner_	CPS Energy		
Location	Calaveras Power Station -	San Antonio_	Boring T.	D. <u>32.00</u> '	Boring Diam.	8.25 "
N. Coord.	13667994.99' E. Coord.	2187797.39'	Surface E	Elevation500).94 ' Ft. M	MSL Datum
Screen: 1	Гуре <u>Sch. 40 PVC</u>	Diam	<u>2.00 "</u>	Length10.00	Slot Size	0.01 "
Casing: 1	Гуре <u>Sch. 40 PVC</u>	Diam	. 2.00 "	Length20.00	_ Sump Length	_0'
	Top of Casing Elevation	504.45 '			Stickup 3.51	1
Depth to W	/ater: 1. Ft. btoc <u>21.</u> 0	09 (2	016-05-21) 2. Ft	()
Drilling Cor	mpany _Strata Core Servic	ces, LLC	Driller	Ryan Spaust		
Drilling Met	thod Hollow-Stem Auge	er	Log By	Andrew Henry		

JKS-58 DRILLING LOG

NOTES

Elevation (Ft MSL)	Depth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
500.94- 500 - -	0-			0		0-5	NO RECOVERY: Previously excavated by hydrovac truck.
- - 495 - -	5-			100		5-6 6-7 7-10	SAND: Brown; fine grained; moist; very loose. CLAYEY SAND: Grayish brown with red; fine grained; damp; loose; non-plastic. SAND: Red, orange, and gray; damp medium grained; very loose to medium dense; slight gray, soft to medium dense, sandy clay; (clay content increases with depth).
- 490 - - -	10			100		10-17	At 9.8' bgs: Color change to dark gray. At 10' bgs: Hard, sandstone, iron ore piece (>1" thick). SILTY CLAY: Gray with alternating yellow and orange layers; dry; dense; slight plasticity. At 12.2' bgs: Brown sand seam (3" thick).
- 485 - - -	15 —			100		17-17.5 17.5-19.5	At 16-16.5' bgs: Brownish tan sandy clay. At 16.5-17' bgs: Gray clay has fractured texture. CLAY: Gray; damp; mixed with coarse grained sand. SAND: Tan; moist to wet. At 18-19.5' bgs: Color change to gray with black staining; no odor; white, crystalline, coarse grained structures present.
-	20 –	7-7				19.5-20	CLAYEY SILTY SAND: Orangish brown; dry; gravel and some small sandstone pieces present.



Proj. No.	0366643	Boring/Well I	D <u>JK</u>	S-58	_ Date Drilled	<u>2016-09-0</u> 7
Project _	Ground Water Investigation	n - Phase II	Owner_	CPS Energy		
Location _	Calaveras Power Station -	San Antonio	Boring T	.D. <u>32.00</u> '	_ Boring Diam.	8.25 "
N. Coord	13667994.99' E. Coord.	2187797.39'	Surface	Elevation <u>50</u>	0.94 ' Ft. M	MSL Datum
Screen: T	ype Sch. 40 PVC	Diam	. 2.00 "	Length10.00	' Slot Size _	0.01 "
Casing: T	ype Sch. 40 PVC	Diam	. 2.00 "	Length20.00	' Sump Length	0'
	Top of Casing Elevation	504.45 '		-	Stickup 3.51	<u>'</u>
Depth to Wa	ater: 1. Ft. btoc <u>21.</u>	09 (2	016-05-21	<u>l</u> _) 2. Ft	()
Drilling Com	npany _Strata Core Servi	ces, LLC	Driller _	Ryan Spaust		
Drilling Meth	hod Hollow-Stem Aug	er	Log By	Andrew Henry		

JKS-58 DRILLING LOG

NOTES

Owner:

Calaveras Power Station

Owner Well #: **JKS-58**

Address:

12940 US 181

San Antonio, TX 78223

Grid #: Latitude: 68-46-5

Well Location:

12940 US 181

29° 18' 28.4" N

San Antonio, TX 78223

Longitude:

098° 19' 01.91" W

Well County:

Bexar

Elevation:

No Data

Type of Work: New Well

Proposed Use:

Monitor

Drilling Start Date: 9/7/2016

Drilling End Date: 9/7/2016

Diameter (in.)

Top Depth (ft.)

Bottom Depth (ft.)

Borehole:

8.25

0

30

Drilling Method:

Hollow Stem Auger

Borehole Completion:

Filter Packed

	Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size
Filter Pack Intervals:	18	30	Sand	20/40
	Top Depth (ft.)	Bottom Depth (ft.)	Description (number of	of sacks & material)
Annular Seal Data:	0	2	Cement 1 Bags/Sacks	
	2	18	Bentonite 4 E	Bags/Sacks

Seal Method: Hand Mixed

Distance to Property Line (ft.): No Data

Sealed By: Driller

Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion:

Surface Slab Installed

Surface Completion by Driller

Water Level:

No Data

Packers:

No Data

Type of Pump:

No Data

Well Tests:

Water Type

Water Quality:

No Data

No Data

Chemical Analysis Made:

Did the driller knowingly penetrate any strata which

contained injurious constituents?: No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data:

The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information:

Strata Core Services, LLC

112 S. Norwood Drive Hurst, TX 76053

Driller Name:

William Fields

License Number: 5

No

56033

Apprentice Name:

Ryan Spaust

Comments:

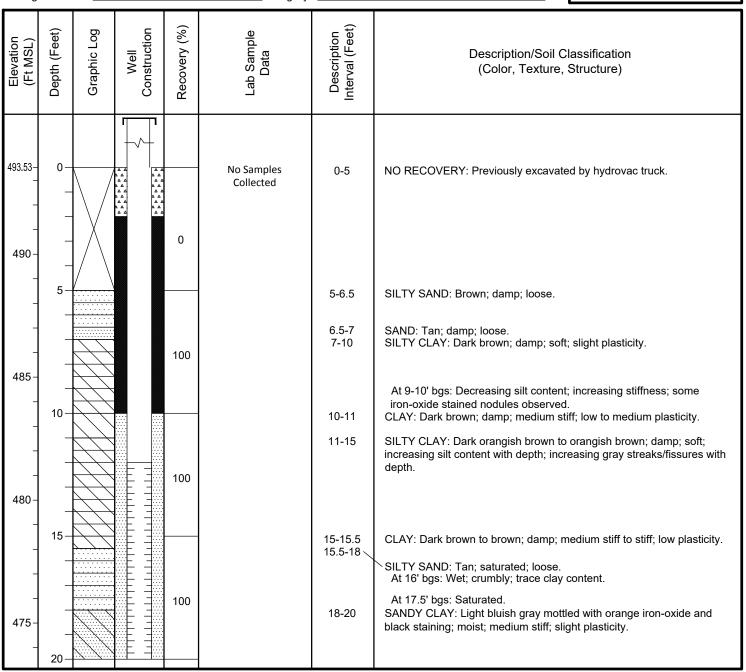
No Data

DESCRIPT	Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL			Casing: BLANK PIPE & WELL SCREEN DATA						
Top (ft.)	Bottom (ft.)	Description	Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)		
0	7	Clayey silt - orangish brown	2	Riser	New Plastic	40	0	20		
7	15	Clayey silty - gray to brown	-	Kisei	(PVC)	40	•	20		
15	19	Sand - tan with gray	2	Screen	New Plastic (PVC)	40 10	20	30		
19	23	Sand - light orange and tan								
23	30	Sand - reddish brown								

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.



Proj. No.	0366643	Boring/Well I	D <u>JKS</u>	S-59		Date Drilled	<u>2016-09-0</u> 7
Project	Ground Water Investigation	n - Phase II	Owner_	CPS Ener	rgy		
Location	Calaveras Power Station -	San Antonio	Boring T.	D. <u>27.00</u>	0'	Boring Diam.	8.25 "
N. Coord.	13667779.88' E. Coord	2188352.07'	Surface E	Elevation	493.5	53 ' Ft. M	MSL Datum
Screen:	Гуре <u>Sch. 40 PVC</u>	Diam	. 2.00 "	Length _	15.00 '	Slot Size	0.01 "
Casing:	Гуре <u>Sch. 40 PVC</u>	Diam	2.00 "	Length _	12.00 '	Sump Length	0'
	Top of Casing Elevation	496.45 '			;	Stickup 2.92	<u> </u>
Depth to W	/ater: 1. Ft. btoc <u>15.</u>	49 (2	016-05-21) 2.	Ft	()
Drilling Cor	mpany Strata Core Service	ces, LLC	Driller	Ryan Sp	aust		
Drilling Me	thod Hollow-Stem Auge	er	Log By	Andrew	Henry		

JKS-59 DRILLING LOG

NOTES

Proj. No. <u>0366643</u> Boring/Well ID <u>JKS-59</u> Date Drilled <u>2016-09-07</u>
Project Ground Water Investigation - Phase II Owner CPS Energy
Location Calaveras Power Station - San Antonio Boring T.D. 27.00 Boring Diam. 8.25 Boring Diam.
N. Coord. <u>13667779.88'</u> E. Coord. <u>2188352.07'</u> Surface Elevation <u>493.53'</u> <u>Ft. MSL</u> Datum
Screen: TypeSch. 40 PVC Diam2.00 " Length15.00 ' Slot Size
Casing: Type Sch. 40 PVC Diam. 2.00 Length 12.00 Sump Length 0'
Top of Casing Elevation 496.45' Stickup 2.92'
Depth to Water: 1. Ft. btoc <u>15.49</u> (<u>2016-05-21</u>) 2. Ft()
Drilling Company Strata Core Services, LLC Driller Ryan Spaust
Drilling Method Hollow-Stem Auger Log By Andrew Henry

JKS-59 DRILLING LOG

NOTES

		u <u>'</u>			Log by	7 (1 (d l c W 1)	·
Elevation (Ft MSL)	Depth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
470- 465- 460- 455-	20			100		20-20.5 20.5-21 21-22.5 22.5-22.8 22.8-25 25-26 26-27	CLAY: Brown to light brown; damp; medium stiff to stiff; low plasticity. SANDY CLAY: Light gray mottled with orangish iron-oxide staining; moist; medium stiff; slight plasticity. CLAY: Dark pinkish gray; moist; soft; layered with very thin orange/iron-oxide stained silty sand. SILT: Tan; saturated; very loose. CLAY: Dark pinkish gray; soft; layered with very thin orange/iron-oxide stained silty sand. SAND: Gray with orange staining; fine grained; saturated; loose. CLAY: Gray; saturated; very soft; high plasticity. Boring terminated at 27' bgs.

Owner:

Calaveras Power Station

Owner Well #: JKS-59

Address:

12940 US 181

Grid #:

68-46-5

4. 40. - 71

San Antonio, TX 78223

Latitude:

29° 18' 28.4" N

Well Location:

12940 US 181

San Antonio, TX 78223

Longitude:

098° 19' 01.91" W

Well County:

Bexar

Elevation:

No Data

Type of Work: New Well

Proposed Use:

Monitor

Drilling Start Date: 9/7/2016

Drilling End Date: 9/7/2016

Diameter (in.)

Top Depth (ft.)

Bottom Depth (ft.)

Borehole:

8.25

0

27

Drilling Method:

Hollow Stem Auger

Borehole Completion:

Filter Packed

	Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size
Filter Pack Intervals:	10 27		Sand	20/40
	Top Depth (ft.)	Bottom Depth (ft.)	Description (number	of sacks & material)
Annular Seal Data:	0	2	Cement 1 B	ags/Sacks
	2	10	Bentonite 2 l	Bags/Sacks

Seal Method: Hand Mixed

Distance to Property Line (ft.): No Data

Sealed By: Driller

Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion:

Surface Slab Installed

Surface Completion by Driller

Water Level:

No Data

Packers:

No Data

Type of Pump:

No Data

Well Tests:

Water Type

Water Quality:

No Data

No Data

Chemical Analysis Made:

Did the driller knowingly penetrate any strata which

contained injurious constituents?:

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data:

The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information:

Strata Core Services, LLC

112 S. Norwood Drive Hurst, TX 76053

Driller Name:

William Fields

License Number:

No

No

56033

Apprentice Name:

Rvan Spaust

Comments:

No Data

DESCRIPT	Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL			Casing: BLANK PIPE & WELL SCREEN DATA						
Top (ft.)	Bottom (ft.)	Description	Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)		
0	7	Clayey silt - orangish brown	2	Riser	New Plastic (PVC)	40	0	12		
7	15	Clayey silty - gray to brown		Misei						
15	19	Sand - tan with gray	2	Screen	New Plastic (PVC)	40 10	12	27		
19	23	Sand - light orange and tan								
23	27	Sand - reddish brown								

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Proj. No. <u>0366643</u> Boring/Well ID <u>JKS-60</u> Date Drilled <u>2016-09-0</u> 7
Project Ground Water Investigation - Phase II Owner CPS Energy
Location Calaveras Power Station - San Antonio Boring T.D. 26.00 ' Boring Diam. 8.25 "
N. Coord. <u>13667357.02</u> E. Coord. <u>2188465.44</u> Surface Elevation <u>492.68</u> Ft. MSL Datum
Screen: Type <u>Sch. 40 PVC</u> Diam. <u>2.00 "</u> Length <u>15.00 '</u> Slot Size <u>0.01 "</u>
Casing: Type Sch. 40 PVC Diam. 2.00 Length 10.00 Sump Length 0'
Top of Casing Elevation 495.70' Stickup 3.02'
Depth to Water: 1. Ft. btoc <u>17.40</u> (<u>2016-05-21</u>) 2. Ft()
Drilling Company Strata Core Services, LLC Driller Ryan Spaust
Drilling Method Hollow-Stem Auger Log By Andrew Henry

JKS-60 DRILLING LOG

NOTES

	Method	<u> </u>	ollow-Stell		Log By	Andrew n	,
Elevation (Ft MSL)	Depth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
492.68- - - - 490-	0-			0	No Samples Collected	0-5	NO RECOVERY: Previously excavated with hydrovac truck.
- - - 485 -	5			100		5-10	SAND: Grayish tan with orange and yellow; very fine grained; damp; loose; no odor. At 6' bgs: Color change to light pinkish orange. At 7.5' bgs: Color change to light gray with trace orange and yellow.
- - 480 - -	10			100		10-10.8 10.8-16	CLAY: Dark gray; moist; soft; slight plasticity. SAND: White with yellow; very fine grained; damp; loose. At 11.6-13' bgs: Color change to pale yellow. At 13-16' bgs: Color change to light orangish yellow.
- - 475 - -	15 — — — — — — 20 —			0		16-23.5	At 15' bgs: Thin reddish orange stringer. At 15-16' bgs: Moist. SAND: Light orange; very fine grained; damp; very dense; unable to collect soil core, soil descriptions based on observation of auger cuttings. At 18-23.5' bgs: Color change to pale yellow.

Proj. No. <u>03666</u>	43 Borii	ng/Well IDJK	(S-60	Date Drilled	<u>2016-09-0</u> 7
Project Groun	d Water Investigation - Pha	se II Owner_	CPS Energy		
Location <u>Calave</u>	eras Power Station - San Aı	ntonio_ Boring 1	Г.D. <u>26.00 '</u>	Boring Diam.	8.25 "
N. Coord. <u>13667</u>	357.02 E. Coord. 21884	65.44 Surface	Elevation 492.6	<u> 58 '</u> <u>Ft. M</u>	//SL Datum
Screen: Type S	Sch. 40 PVC	Diam 200 "	Length15.00 '	Slot Size	0.01"
Screen. Typec	JOH: 40 1 VO	_ Diaiii. <u>2.00</u> _	Lengur	Siot Size	0.01
Casing: Type S	Sch. 40 PVC	_ Diam. <u>2.00 "</u>	Length10.00 '	Sump Length	_0'
Тор	of Casing Elevation <u>495.</u>	70 '	_	Stickup 3.02	<u>'</u>
Depth to Water:	1. Ft. btoc17.40	_ (2016-05-2	<u>1</u>) 2. Ft	()
Drilling Company	Strata Core Services, LL	.C Driller _	Ryan Spaust		
Drilling Method _	Hollow-Stem Auger	Log By	Andrew Henry		

JKS-60 DRILLING LOG

NOTES

_					Log by		
Elevation (Ft MSL)	Depth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
	20 -			0 100		23.5-25.7 25.7-25.9 25.9-26	At 22' bgs: Moisture content increases to wet. SAND: Tan; fine grained; saturated; loose. At 25.5' bgs: Color change to white with brown; medium grained. SILTY SAND: Dark reddish staining; saturated. CLAY-SHALE: Shaley clay; tan; wet; dense; non-plastic. Boring terminated at 26' bgs.

Owner:

Calaveras Power Station

Owner Well #: **JKS-60**

Address:

12940 US 181

Grid #:

68-46-5

San Antonio, TX 78223

Latitude:

29° 18' 28.4" N

Well Location:

12940 US 181 San Antonio, TX 78223

Longitude:

098° 19' 01.91" W

Well County:

Bexar

Elevation:

No Data

Type of Work: New Well

Proposed Use:

Monitor

Drilling Start Date: 9/7/2016

Drilling End Date: 9/7/2016

Diameter (in.)

Top Depth (ft.)

Bottom Depth (ft.)

Borehole:

8.25

0

25

Drilling Method:

Hollow Stem Auger

Borehole Completion:

Filter Packed

	Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size
Filter Pack Intervals:	8	25	Sand	20/40
	Top Depth (ft.)	Bottom Depth (ft.)	Description (number of	of sacks & material)
Annular Seal Data:	0	2	Cement 1 B	ags/Sacks
	2	8	Bentonite 2 B	Bags/Sacks

Seal Method: Hand Mixed

Distance to Property Line (ft.): No Data

Sealed By: Driller

Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion:

Surface Slab Installed

Surface Completion by Driller

Water Level:

No Data

Packers:

No Data

Type of Pump:

No Data

Well Tests:

Water Type

Water Quality:

No Data

No Data

Chemical Analysis Made:

Did the driller knowingly penetrate any strata which

contained injurious constituents?: No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data:

The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information:

Strata Core Services, LLC

112 S. Norwood Drive Hurst, TX 76053

Driller Name:

William Fields

License Number: §

No

56033

Apprentice Name:

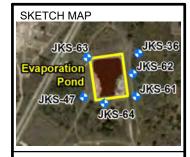
Ryan Spaust

Comments:

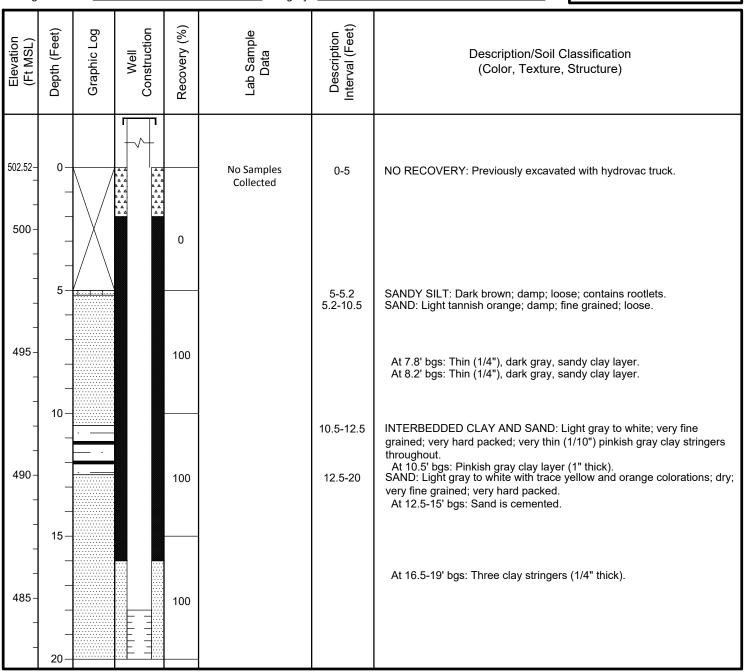
No Data

DESCRIPT	Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL			BLANK	Casing PIPE & WELL		DATA	
Top (ft.)	Bottom (ft.)	Description	Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
0	7	Clayey silt - orangish brown	2	Riser	New Plastic	40	0	10
7	15	Clayey silty - gray to brown	-	Moei	(PVC)	40	U	10
15	19	Sand - tan with gray	2	Screen	New Plastic (PVC)	40 10	10	25
19	23	Sand - light orange and tan						
23	25	Sand - reddish brown						

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY


TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.



Proj. No	0366643	Boring/Well I	D JKS	S-61		Date Drilled	2016-09-08
Project _	Ground Water Investigation	- Phase II	Owner_	CPS Energ	gy		
Location _	Calaveras Power Station - S	San Antonio	Boring T	.D. <u>35.00</u>	•	Boring Diam.	8.25 "
N. Coord	13665721.04' E. Coord	2187196.65'	Surface	Elevation _	502.5	52 ' Ft.	MSL Datum
Screen: Ty	ype <u>Sch. 40 PVC</u>	Diam	. 2.00 "	Length	<u>15.00 '</u>	Slot Size _	0.01 "
Casing: Ty	ype <u>Sch. 40 PVC</u>	Diam	. 2.00 "	Length	<u> 18.00 '</u>	Sump Length	n <u>0'</u>
	Top of Casing Elevation	505.51 '		-	;	Stickup 2.99) '
Depth to Wa	ater: 1. Ft. btoc <u>24.</u> 4	16 (2	016-05-21) 2.	Ft	()
Drilling Com	pany <u>Strata Core Servic</u>	es, LLC	Driller _	Ryan Spa	aust		
Drilling Meth	nodHollow-Stem Auge	er	Log By	Andrew H	Henry		

JKS-61 DRILLING LOG

NOTES

Proj. No.	0366643	Boring/Well I	D JKS	S-61		Date Drilled	<u>2016-09-0</u> 8
Project	Ground Water Investigation	n - Phase II	Owner_	CPS Ener	rgy		
Location	Calaveras Power Station -	San Antonio	Boring T	.D. <u>35.00</u>	0'	Boring Diam.	8.25 "
N. Coord.	13665721.04' E. Coord	2187196.65'	Surface l	Elevation	502.5	5 <u>2 '</u> <u>Ft. M</u>	MSL Datum
Screen:	Гуре <u>Sch. 40 PVC</u>	Diam	2.00 "	Length _	15.00 '	Slot Size	0.01 "
Casing:	Гуре <u>Sch. 40 PVC</u>	Diam	. 2.00 "	Length _	18.00 '	Sump Length	_0'
	Top of Casing Elevation	505.51 '		-	;	Stickup 2.99	<u> </u>
Depth to W	/ater: 1. Ft. btoc24.4	46 (2	016-05-21	<u>l</u>) 2.	Ft	()
Drilling Cor	mpany Strata Core Servi	ces, LLC	Driller _	Ryan Sp	aust		
Drilling Me	thod Hollow-Stem Auge	er	Log By	Andrew	Henry		

JKS-61 DRILLING LOG

NOTES

Dilling	11101110		IOIIOW Otol		Log by	741010111	·
Elevation (Ft MSL)	Depth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
- 480 - - -	20 25			100		20-22.5 22.5-25 25-31.5	CLAYEY SAND: Gray with trace orange; damp; fine grained; loose; trace clay content present. At 21' bgs: Color change to tan with orange and gray; moisture content becomes wet. At 21.8' bgs: Thin pinkish gray clay seam (1/4" thick). SAND: Gray with orange, tan, and yellow; fine grained; wet; loose.
- 475 - - -	-			100		20-31.0	CLAYEY SAND: Gray; fine grained; wet to saturated; loose. At 25-25.8' bgs: Saturated. At 27.5-28.5' bgs: Saturated.
- 470 - - -	30 35			100		31.5-32.5 32.5-33 33-35	At 30-31' bgs: Saturated. At 31-32.5' bgs: Wet. SANDY CLAY: Pinkish gray; damp; medium dense; non-plastic to plastic; very thin sand stringers throughout (1/10" thick). CLAYEY SILTY SAND: Gray; saturated; loose. SANDY CLAY: Pinkish gray; damp; medium dense; slightly plastic; very thin sand stringers throughout (1/10" thick). Boring terminated at 35' bgs.
- 465 - - -	- - - 40-						

Owner:

Calaveras Power Station

Owner Well #: **JKS-61**

Address:

12940 US 181

San Antonio, TX 78223

68-46-5

12940 US 181

Latitude:

Grid #:

29° 18' 28.4" N

Well Location:

San Antonio, TX 78223

Longitude:

098° 19' 01.91" W

Well County:

Bexar

Elevation:

No Data

Type of Work: New Well

Proposed Use:

Monitor

Drilling Start Date: 9/8/2016

Drilling End Date: 9/8/2016

Diameter (in.)

Top Depth (ft.)

Bottom Depth (ft.)

Borehole:

8.25

0

33

Drilling Method:

Hollow Stem Auger

Borehole Completion:

Filter Packed

	Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size
Filter Pack Intervals:	15	33	Sand	20/40
	Top Depth (ft.)	Bottom Depth (ft.)	Description (number of	of sacks & material)
Annular Seal Data:	0	2	Cement 1 Ba	ags/Sacks
	2	15	Bentonite 2 E	Bags/Sacks

Seal Method: Hand Mixed

Distance to Property Line (ft.): No Data

Sealed By: Driller

Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion:

Surface Slab Installed

Surface Completion by Driller

Water Level:

No Data

Packers:

No Data

Type of Pump:

No Data

Well Tests:

Water Type

Water Quality:

No Data

No Data

Chemical Analysis Made:

Did the driller knowingly penetrate any strata which

contained injurious constituents?: No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data:

The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information:

Strata Core Services, LLC

112 S. Norwood Drive Hurst, TX 76053

Driller Name:

William Fields

License Number:

No

56033

Apprentice Name:

Ryan Spaust

Comments:

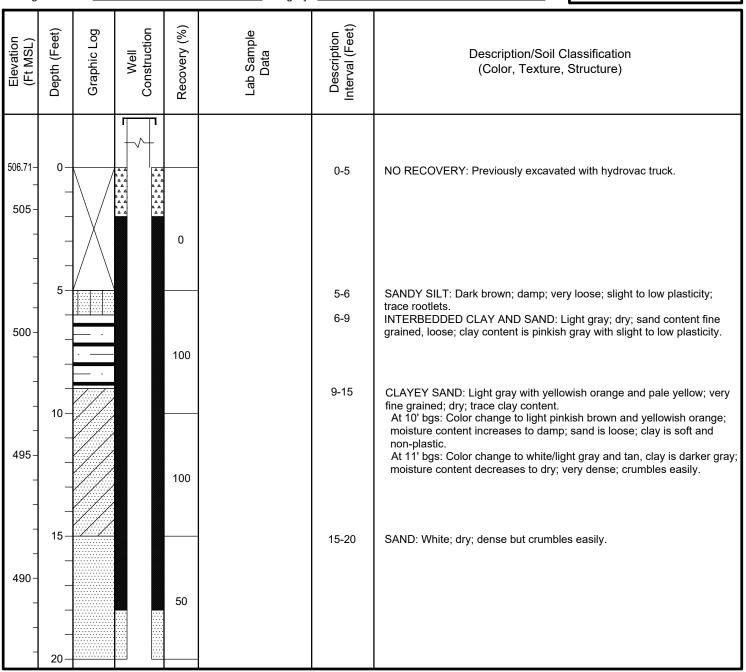
No Data

DESCRIPT		Lithology: OR OF FORMATION MATERIAL		BLANK	DATA	ATA			
Top (ft.)	Bottom (ft.)	Description	Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)	
0	7	Clayey silt - orangish brown	2	Riser	New Plastic	40	0	18	
7	15	Clayey silty - gray to brown			(PVC)				
15	19	Sand - tan with gray	2	Screen	New Plastic (PVC)	40 10	18	33	
19	23	Sand - light orange and tan							
23	33	Sand - reddish brown							

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

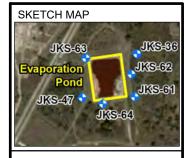
TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.



Proj. No. <u>0366643</u> Boring/Well ID <u>JKS-62</u> Date Drilled <u>2016-09-0</u> 8
Project Ground Water Investigation - Phase II Owner CPS Energy
Location Calaveras Power Station - San Antonio Boring T.D. 37.00 Boring Diam. 8.25 Boring Diam.
N. Coord. <u>13666020.13'</u> E. Coord. <u>2187153.88'</u> Surface Elevation <u>506.71'</u> <u>Ft. MSL</u> Datum
Screen: Type Sch. 40 PVC Diam. 2.00 " Length 10.00 ' Slot Size 0.01 "
Casing: Type Sch. 40 PVC Diam. 2.00 " Length 20.00 ' Sump Length 0'
Top of Casing Elevation 509.84' Stickup 3.13'
Depth to Water: 1. Ft. btoc <u>28.90</u> (<u>2016-05-21</u>) 2. Ft()
Drilling Company Strata Core Services, LLC Driller Ryan Spaust
Drilling Method Hollow-Stem Auger Log By Andrew Henry

JKS-62 DRILLING LOG


NOTES

Proj. No. <u>0366643</u> Boring/Well ID <u>JKS-62</u> Date Drilled <u>2016-09-0</u> 8							
Project Ground Water Investigation - Phase II Owner CPS Energy							
Location Calaveras Power Station - San Antonio Boring T.D. 37.00 Boring Diam. 8.25 Boring Diam.							
N. Coord. <u>13666020.13'</u> E. Coord. <u>2187153.88'</u> Surface Elevation <u>506.71'</u> <u>Ft. MSL</u> Datum							
Screen: Type _ Sch. 40 PVC Diam 2.00 " Length _ 10.00 ' Slot Size							
Casing: Type Sch. 40 PVC Diam. 2.00 Length 20.00 Sump Length 0'							
Top of Casing Elevation 509.84' Stickup 3.13'							
Depth to Water: 1. Ft. btoc <u>28.90</u> (<u>2016-05-21</u>) 2. Ft()							
Drilling Company Strata Core Services, LLC Driller Ryan Spaust							
Drilling Method Hollow-Stem Auger Log By Andrew Henry							

JKS-62 DRILLING LOG

NOTES

Dilling					LOG By	-	
Elevation (Ft MSL)	Depth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
- 485 - -	20-			50		20-25	SAND: Light gray to tannish gray; fine grained; dry to damp; loose. At 21.2' bgs: Moisture content increases to damp. At 21.4' bgs: Yellow and iron-oxide staining.
480 - - - -	25 — — — — — — — — — — — — — — — — — — —			100		25-27.5 27.5-29.5 29.5-30 30-30.5	INTERBEDDED CLAY AND SAND: Gray; fine grained; wet; loose. At 25.5' bgs: Iron-oxide staining and thin (1/4" thick) pinkish gray clay layer. At 27.5' bgs: Iron-oxide staining and thin (1/4" thick) pinkish gray clay layer. CLAYEY SAND: Gray with iron-oxide staining; saturated; loose; trace clay content. At 29' bgs: Increased iron-oxide staining with clay layers. INTERBEDDED CLAY AND SAND: Pinkish gray; damp; medium dense; slight plasticity.
475 - - -	-			0		30.5-31 31-31.5 31.5-35	SAND: Gray; fine grained; damp. INTERBEDDED CLAY AND SAND: Orange, fine grained, moist sand; gray, low plasticity clay; loose to medium dense. CLAY: Brown; moist; loose to medium dense; non plastic. At 31.5 bgs: Thin reddish brown nodule layer (1/4" thick). CLAY: Brown; damp; soft; high plasticity; unable to collect soil core; descriptions based on observation of auger cuttings.
470 - -	35 —			0	JKS-62_35-37 USCS: Clayey Sand (SC) AL: 38 / 17 / 21 - #200: 32.3 k: 6.63x10 ⁻⁷	35-37	NO RECOVERY: Cohesive sample (Shelby tube) collected from 35'-37' bgs. Boring terminated at 35' bgs.
_	40 —						

Owner:

Calaveras Power Station

Owner Well #: JKS-62

Address:

12940 US 181

San Antonio, TX 78223

68-46-5

Well Location:

12940 US 181

Latitude:

Grid #:

29° 18' 28.4" N

San Antonio, TX 78223

Longitude:

098° 19' 01.91" W

Well County:

Elevation:

No Data

Type of Work:

Bexar

New Well

Proposed Use:

Monitor

Drilling Start Date: 9/8/2016

Drilling End Date: 9/8/2016

Diameter (in.)

Top Depth (ft.)

Bottom Depth (ft.)

Borehole:

8.25

0

30

Drilling Method:

Hollow Stem Auger

Borehole Completion:

Filter Packed

	Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size		
Filter Pack Intervals:	18	30	Sand	20/40		
	Top Depth (ft.)	Bottom Depth (ft.)	Description (number of	Description (number of sacks & material)		
Annular Seal Data:	0	2	Cement 1 Bags/Sacks			
	2	18	Bentonite 2 Bags/Sacks			

Seal Method: Hand Mixed

Distance to Property Line (ft.): No Data

Sealed By: Driller

Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion:

Surface Slab Installed

Surface Completion by Driller

Water Level:

No Data

Packers:

No Data

Type of Pump:

No Data

Well Tests:

Water Type

Water Quality:

No Data

No Data

Chemical Analysis Made:

Did the driller knowingly penetrate any strata which

contained injurious constituents?: No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data:

The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information:

Strata Core Services, LLC

112 S. Norwood Drive Hurst, TX 76053

Driller Name:

William Fields

License Number:

No

56033

Apprentice Name:

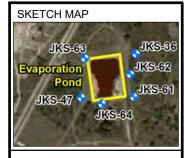
Ryan Spaust

Comments:

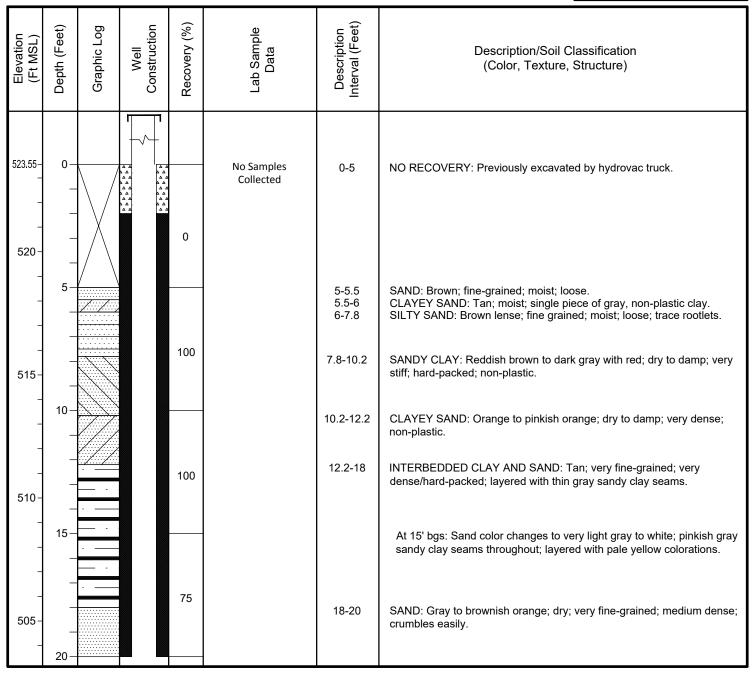
No Data

DESCRIPT	Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL				Casing: BLANK PIPE & WELL SCREEN DATA					
Top (ft.)	Bottom (ft.)	Description	Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)		
0	7	Clayey silt - orangish brown	2	Riser	New Plastic	40	0	20		
7	15	Clayey silty - gray to brown			(PVC)					
15	19	Sand - tan with gray	2	Screen	New Plastic (PVC)	40 10	20	30		
19	23	Sand - light orange and tan								
23	30	Sand - reddish brown								

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

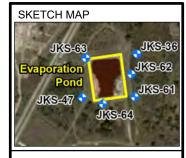

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

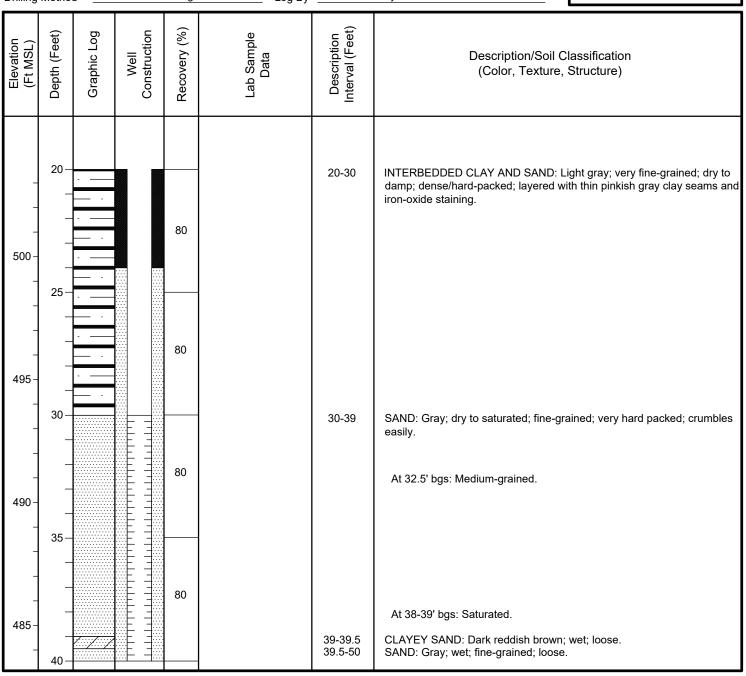
Please include the report's Tracking Number on your written request.



Proj. No.	0366643	Boring/Well I	D JKS	S-63	_ Date Drilled	<u>2016-09-0</u> 8	
Project	Ground Water Investigatio	n - Phase II	Owner_	CPS Energy			
Location	Calaveras Power Station -	San Antonio	Boring T	.D. <u>50.00</u> '	_ Boring Diam.	8.25 "	
N. Coord.	13666230.86' E. Coord.	2186553.38'	Surface l	Elevation <u>52</u>	3.55 ' Ft. I	MSL Datum	
Screen: T	ype Sch. 40 PVC	Diam	. 2.00 "	Length20.00	' Slot Size _	0.01 "	
Casing: T	ype Sch. 40 PVC	Diam	. 2.00 "	Length30.00	L Sump Length	0'	
Top of Casing Elevation 526.86' Stickup 3.31'							
Depth to W	ater: 1. Ft. btoc <u>44.</u>	70 (2	016-05-21	<u> </u> _) 2. Ft	()	
Drilling Con	npany <u>Strata Core Servi</u>	ces, LLC	Driller _	Ryan Spaust			
Drilling Method Hollow-Stem Auger Log By Andrew Henry							

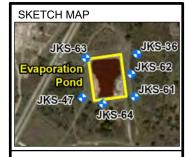
JKS-63 DRILLING LOG

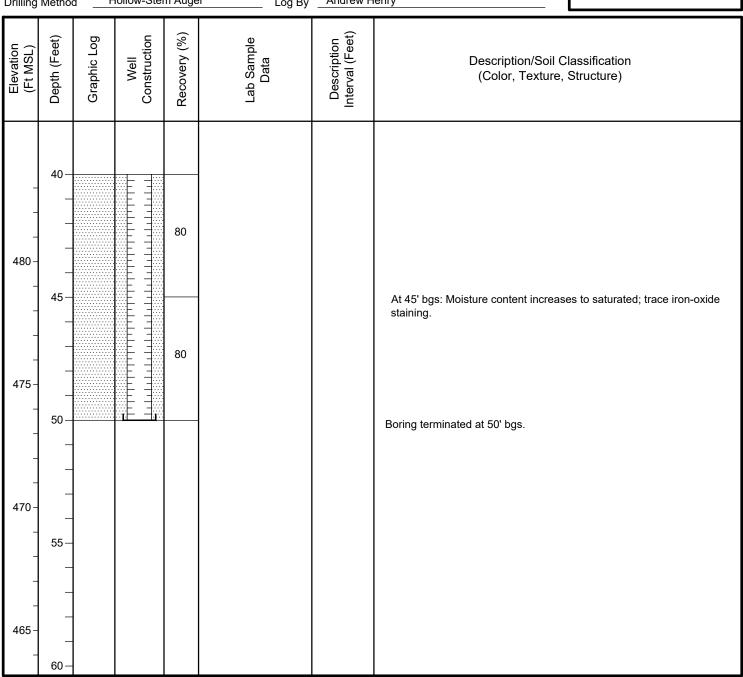

NOTES



Proj. No. <u>0366643</u>	i	Boring/Well I	D JKS	S-63		Date Drilled	<u>2016-09-0</u> 8	
Project Ground	Water Investigatio	n - Phase II	Owner_	CPS Ene	ergy			
Location Calavera	s Power Station -	San Antonio	Boring T	.D. <u>50.0</u>	0'	Boring Diam.	8.25 "	
N. Coord. <u>1366623</u>	0.86' E. Coord.	2186553.38'	Surface I	Elevation	523.5	<u>55 '</u> <u>Ft.</u>	MSL Datum	
Screen: Type Sch	1. 40 PVC	Diam	. 2.00 "	Length _	20.00 '	Slot Size _	0.01 "	
Casing: Type Sch	Casing: Type Sch. 40 PVC Diam. 2.00 Length 30.00 Sump Length 0							
Top of Casing Elevation 526.86' Stickup 3.31'								
Depth to Water: 1.	Ft. btoc 44	.70 (2	016-05-21) 2.	Ft	()	
Drilling Company Strata Core Services, LLC Driller Ryan Spaust								
Drilling Method Hollow-Stem Auger Log By Andrew Henry								

JKS-63 DRILLING LOG


NOTES



Proj. No. <u>0366643</u> Boring/Well ID <u>JKS-63</u> Date Drilled <u>2016-09-08</u>							
Project Ground Water Investigation - Phase II Owner CPS Energy							
Location Calaveras Power Station - San Antonio Boring T.D. 50.00 Boring Diam. 8.25 Boring Diam.							
N. Coord. <u>13666230.86'</u> E. Coord. <u>2186553.38'</u> Surface Elevation <u>523.55'</u> <u>Ft. MSL</u> Datum							
Screen: Type Sch. 40 PVC Diam. 2.00 " Length 20.00 ' Slot Size 0.01 "							
Casing: Type Sch. 40 PVC Diam. 2.00 " Length 30.00 Sump Length 0'							
Top of Casing Elevation 526.86' Stickup 3.31'							
Depth to Water: 1. Ft. btoc <u>44.70</u> (<u>2016-05-21</u>) 2. Ft. ()							
Drilling Company Strata Core Services, LLC Driller Ryan Spaust							
Drilling Company Strata Core Services, LLC Driller Ryan Spaust							
Drilling Method Hollow-Stem Auger Log By Andrew Henry							

JKS-63 DRILLING LOG

NOTES

Owner:

Calaveras Power Station

JKS-63

Address:

12940 US 181

Grid #:

68-46-5

San Antonio, TX 78223

Latitude:

Owner Well #:

29° 18' 28.4" N

Well Location:

12940 US 181

San Antonio, TX 78223

Longitude:

098° 19' 01.91" W

Well County:

Bexar

Elevation:

No Data

Type of Work:

New Well

Proposed Use:

Monitor

Drilling Start Date: 9/8/2016

Drilling End Date: 9/8/2016

Diameter (in.)

Top Depth (ft.)

Bottom Depth (ft.)

Borehole:

8.25

0

50

Drilling Method:

Hollow Stem Auger

Borehole Completion:

Filter Packed

	Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size
Filter Pack Intervals:	28 50		Sand	20/40
	Top Depth (ft.)	Bottom Depth (ft.)	Description (number o	f sacks & material)
Annular Seal Data:	0	2	Cement 1 Bags/Sacks	
	2	28	Bentonite 2 Bags/Sacks	

Seal Method: Hand Mixed

Distance to Property Line (ft.): No Data

Sealed By: Driller

Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion:

Surface Slab Installed

Surface Completion by Driller

Water Level:

No Data

Packers:

No Data

Type of Pump:

No Data

Well Tests:

Water Type

Water Quality:

No Data

No Data

Chemical Analysis Made: No

Did the driller knowingly penetrate any strata which

contained injurious constituents?:

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data:

The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information: Strata Core Services, LLC

112 S. Norwood Drive Hurst, TX 76053

Driller Name:

William Fields

License Number:

No

56033

Apprentice Name:

Ryan Spaust

Comments:

No Data

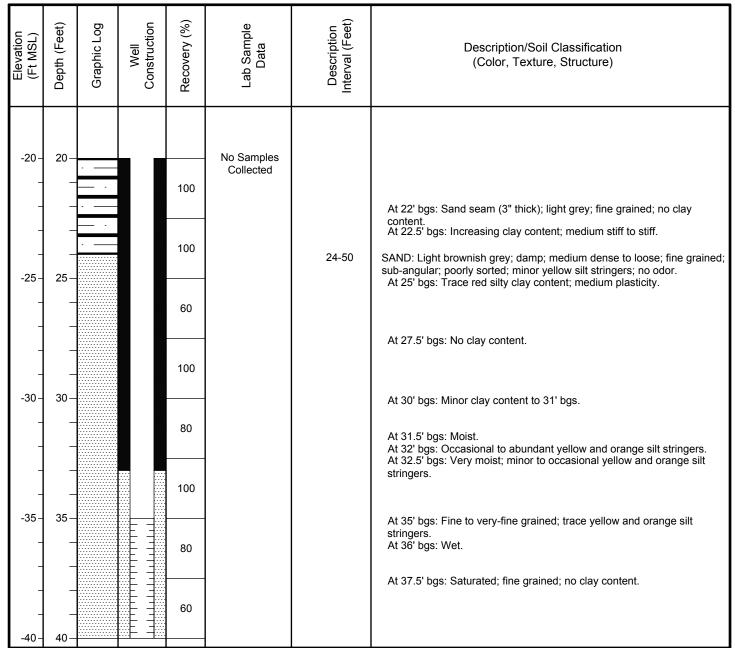
DESCRIPT	Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL				Casing: BLANK PIPE & WELL SCREEN DATA					
Top (ft.)	Bottom (ft.)	Description	Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)		
0	7	Clayey silt - orangish brown	2	Riser	New Plastic	40	0	30		
7	15	Clayey silty - gray to brown	1.5	17070	(PVC)					
15	19	Sand - tan with gray	2	Screen	New Plastic (PVC)	40 10	30	50		
19	23	Sand - light orange and tan								
23	50	Sand - reddish brown								

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

JKS-63R DRILLING LOG


Proj. No. <u>0503422</u> Boring/Well ID <u>JKS-63R</u> Date	e Drilled <u>2019-05-0</u> 2 SKETCH MAP					
ProjectCalaveras Power Station - Well Re-Install OwnerCPS Energy						
Location Calaveras Power Station Boring T.D. 24.00 ' Boring	ng Diam. <u>8.25 "</u>					
N. Coord. NA E. Coord. NA Surface Elevation 0.00'	Ft. MSL Datum					
Screen: Type _ Sch. 40 PVC Diam 2.00 " Length 15.00 ' Slot	: Size0.01 "					
Casing: Type Sch. 40 PVC Diam. 2.00 Length 35.00 Sump Length 0'						
Top of Casing Elevation 0.00' Sticku	up <u>3.50 '</u> NOTES					
Depth to Water: 1. Ft. <u>36.00</u> (<u>SB Installation</u>) 2. Ft. <u>0.00</u>	()					
Drilling Company Vortex Drilling Partners, LP Driller James Neal						
Drilling Method Hollow-Stem Auger Log By Nick Houtchens						

no odor. SILT: Light grey; dry; loose to medium dense; non-plastic; minor to occasional very-fine grained sand content, with increasing sand content with depth; minor yellow silt stringers; no odor. SAND: Light grey; dry; loose to medium dense; very-fine grained; sub-angular; poorly to moderately sorted; trace clay content; occasional yellow silt stringers; no odor. At 12.5' bgs: Medium dense. At 15' bgs: Medium dense to loose.	Elevation (Ft MSL)	Depth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
At 6' bgs: Occasional thin, light brown, very-fine grained sand seams. At 6.5' bgs: Interbedded clay and sand seam (6" thick); dry; clay content dark brown, stiff; sand content very-fine grained, sub-angular; occasional light brown and yellow silt stringers. CLAYEY SAND: Reddish brown; damp; medium dense; non-plastic to slightly plastic; very-fine grained; sub-angular; minor yellow silt stringers; no odor. SILT: Light grey; dry; loose to medium dense; non-plastic; minor to occasional very-fine grained sand content, with increasing sand content with depth; minor yellow silt stringers; no odor. SAND: Light grey; dry; loose to medium dense; very-fine grained; sub-angular; poorly to moderately sorted; trace clay content; occasional yellow silt stringers; no odor. At 12.5' bgs: Medium dense.	- - -	- - -			100			sorted; loose; minor silt and trace clay content; no odor. Ground surface to 5 ft. bgs logged via post hole digger soil cuttings. SANDY CLAY: Brown with occasional red and black mottling; damp; medium stiff; low plasticity; trace silt content; no odor. At 4' bgs: Color change to reddish brown.
10-17.5 10-		3						At 6' bgs: Occasional thin, light brown, very-fine grained sand seams. At 6.5' bgs: Interbedded clay and sand seam (6" thick); dry; clay content dark brown, stiff; sand content very-fine grained, sub-angular; occasional light brown and yellow silt stringers.
At 12.5' bgs: Medium dense. 100 -15 - 15 - 15 - 100 100 At 15' bgs: Medium dense to loose.	-10 <i>-</i> -10-	10-						SILT: Light grey; dry; loose to medium dense; non-plastic; minor to occasional very-fine grained sand content, with increasing sand content with depth; minor yellow silt stringers; no odor. SAND: Light grey; dry; loose to medium dense; very-fine grained;
	- -15	_ _ 15_			100			At 12.5' bgs: Medium dense.
	- -	_ _ _					17.5-24	INTERBEDDED CLAY AND SAND: Light grey (sand content) and light brown (clay content); dry to damp; clay content medium stiff, slight to low

JKS-63R DRILLING LOG

Proj. No. <u>0503422</u> Boring/Well ID <u>JKS-63R</u> Date Drilled <u>2019-05-0</u> 2	SKETCH MAP
Project Calaveras Power Station - Well Re-Install Owner CPS Energy	
Location Calaveras Power Station Boring T.D. 24.00 'Boring Diam. 8.00 "	
N. Coord. NA E. Coord. NA Surface Elevation 0.00' Ft. MSL Datum	
Screen: Type _ Sch. 40 PVC Diam 2.00 " Length 15.00 ' Slot Size	
Casing: Type Sch. 40 PVC Diam. 2.00 Length 35.00 Sump Length 0	
Top of Casing Elevation 0.00' Stickup 3.50'	NOTES
Depth to Water: 1. Ft. <u>36.00</u> (<u>SB Installation</u>) 2. Ft. <u>0.00</u> ()	
Drilling Company Vortex Drilling Partners, LP Driller James Neal	
Drilling Method Hollow-Stem Auger Log By Nick Houtchens	

JKS-63R DRILLING LOG

Proj. No.	050342	2	Boring/Well I	D JKS	S-63R	Date Drilled	<u>2019-05-0</u> 2	SKETCH MAP
Project	Calaver	as Power Station -	Well Re-Install	Owner_	CPS Energy			
Location	Calaver	as Power Station		Boring T.	.D. <u>24.00</u> '	Boring Diam.	8.00 "	
N. Coord.	_NA	E. Coord.	NA	Surface I	Elevation0.00	<u>' Ft. I</u>	MSL Datum	
Screen:	Type Sc	ch. 40 PVC	Diam	2.00 "	Length15.00 '	Slot Size	0.01 "	
Casing:	Type <u>Sc</u>	th. 40 PVC	Diam	2.00 "	Length <u>35.00</u> '	Sump Length	n <u>0'</u>	
	Тор	of Casing Elevation	0.00 '		_	Stickup 3.50	1	NOTES
Depth to W	Vater:	1. Ft. <u>36</u> .	00 (<u>SBI</u>	nstallation	<u>1</u>) 2. Ft. <u>0</u> .	00()	
Drilling Co	mpany	Vortex Drilling Pa	rtners, LP	Driller _	James Neal			
Drilling Me	ethod	Hollow-Stem Aug	er	Log By	Nick Houtchens			

Elevation (Ft MSL)	Depth (Feet)	Graphic Log	Well Construction	Recovery (%)	Lab Sample Data	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
-4045505560	40 - 45 - 50 - 55 - 60 -			80 80 60	No Samples Collected		At 40' bgs: Abundant orange silt stringers. At 42.5' bgs: Fine to medium grained; occasional orange silt stringers. At 45' bgs: Fine grained; At 47.5' bgs: Trace orange silt stringers. Boring terminated at 50' bgs.

Longitude:

Elevation:

Owner: CPS Energy Owner Well #: JKS-63R

Address: P.O. Box 2906 Grid #: 68-46-5

San Antonio , TX 78299 Latitude: 29° 19' 27.98" N

Well Location: Calaveras Power Station

12940 US 181

San Antonio, TX 78263

098° 18' 56.77" W

516 ft. above sea level

Well County: Bexar

Type of Work: New Well Proposed Use: Monitor

Drilling Start Date: 5/2/2019 Drilling End Date: 5/2/2019

 Diameter (in.)
 Top Depth (ft.)
 Bottom Depth (ft.)

 Borehole:
 8.25
 0
 50

Drilling Method: Hollow Stem Auger

Borehole Completion: Filter Packed

Filter Pack Intervals:

Top Depth (ft.) Bottom Depth (ft.) Filter Material Size

Size

Sand

12/20

Annular Seal Data:

Top Depth (ft.)

Bottom Depth (ft.)

Description (number of sacks & material)

Concrete 1.16 Bags/Sacks

2 33 Bentonite 15.08 Bags/Sacks

Seal Method: **Hand Mixed** Distance to Property Line (ft.): **No Data**

Sealed By: **Driller**Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion: Surface Sleeve Installed Surface Completion by Driller

Water Level: 36 ft. below land surface on 2019-05-02

Packers: No Data

Type of Pump: No Data

Well Tests: No Test Data Specified

Water Quality:

Strata Depth (ft.)	Water Type
No Data	No Data

Chemical Analysis Made: No

Did the driller knowingly penetrate any strata which contained injurious constituents?: **No**

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the

driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in

the report(s) being returned for completion and resubmittal.

Company Information: Vortex Drilling

4412 Bluemel Road San Antonio, TX 78240

Driller Name: James E. Neal License Number: 4868

Apprentice Name: Tony Elmendorf

Comments: No Data

Report Amended on 7/12/2019 by Request #28256

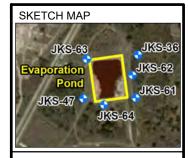
Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Casing: BLANK PIPE & WELL SCREEN DATA

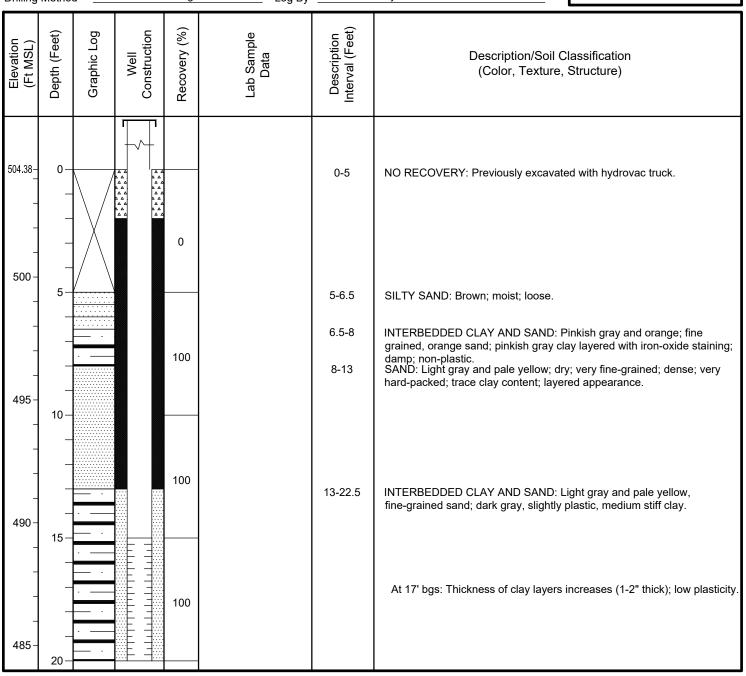
Top (ft.)	Bottom (ft.)	Description
0	3.5	Sand
3.5	7.5	Sandy Clay
7.5	8.5	Clayey Sand
8.5	10	Silt
10	17.5	Sand
17.5	24	Interbedded Clay and Sand
24	50	Sand

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Top Cap (Locking)	New Plastic (PVC)	40		
2	Bottom Cap	New Plastic (PVC)	40		
2	Riser	New Plastic (PVC)	40	-3	35
2	Screen	New Plastic (PVC)	40 0.010	35	50

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

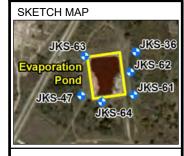

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.



Proj. No. <u>036</u>	6643	Boring/Well I	D JKS	S-64		Date Drilled	<u>2016-09-0</u> 9
Project Gro	und Water Investigation	n - Phase II	Owner_	CPS Ene	rgy		
Location <u>Cal</u>	averas power Station -	San Antonio	Boring T	.D. <u>32.0</u>	0'	Boring Diam.	8.25 "
N. Coord. <u>136</u>	65627.14' E. Coord.	2186778.76'	Surface l	Elevation	504.3	<u> 88 '</u> <u>Ft. N</u>	<u>//SL</u> Datum
Screen: Type	Sch. 40 PVC	Diam	. 2.00 "	Length _	15.00 '	Slot Size	0.01 "
Casing: Type	Sch. 40 PVC	Diam	. 2.00 "	Length _	15.00 '	Sump Length	_0'
Top of Casing Elevation 507.84 ' Sti						Stickup 3.46	<u>'</u>
Depth to Water:	1. Ft. btoc25.0	06 (2	016-05-21	<u>1</u>) 2.	Ft	()
Drilling Compan	Strata Core Service	ces, LLC	Driller _	Ryan Sp	aust		
Drilling Method	Hollow-Stem Auge	er	Log By	Andrew	Henry		

JKS-64 DRILLING LOG


NOTES



Proj. No.	0366643	Boring/Well I	D <u>JK</u>	S-64	Date Drilled	<u>2016-09-0</u> 9
Project	Ground Water Investigation	n - Phase II	Owner_	CPS Energy		
Location	Calaveras power Station -	San Antonio	Boring T	.D. <u>32.00</u> '	Boring Diam.	8.25 "
N. Coord.	13665627.14' E. Coord.	2186778.76'	Surface	Elevation <u>504</u>	.38 ' Ft. N	//SL Datum
Screen:	Гуре <u>Sch. 40 PVC</u>	Diam	. 2.00 "	Length15.00	_ Slot Size	0.01 "
Casing:	Гуре <u>Sch. 40 PVC</u>	Diam	. 2.00 "	Length15.00	_ Sump Length	0'
	Top of Casing Elevation	507.84 '		-	Stickup 3.46	<u> </u>
Depth to W	/ater: 1. Ft. btoc <u>25.</u>	06 (2	016-05-21	<u>1</u>) 2. Ft	()
Drilling Cor	mpany Strata Core Servi	ces, LLC	Driller _	Ryan Spaust		
Drilling Me	thod Hollow-Stem Auge	er	Log By	Andrew Henry		

JKS-64 DRILLING LOG

NOTES

Owner:

Calaveras Power Station

Owner Well #: JKS-64

Address:

12940 US 181

Grid #:

68-46-5

Address

12940 05 161

San Antonio, TX 78223

Latitude:

29° 18' 28.4" N

Well Location:

12940 US 181

San Antonio, TX 78223

Longitude:

098° 19' 01.91" W

Well County:

Bexar

Elevation:

No Data

Type of Work:

New Well

Proposed Use:

Monitor

Drilling Start Date: 9/9/2016

Drilling End Date: 9/9/2016

Diameter (in.)

Top Depth (ft.)

Bottom Depth (ft.)

Borehole:

8.25

0

30

Drilling Method:

Hollow Stem Auger

Borehole Completion:

Filter Packed

	Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size
Filter Pack Intervals:	12	30	Sand	20/40
	Top Depth (ft.)	Bottom Depth (ft.)	Description (number	of sacks & material)
Annular Seal Data:	0	2	Cement 1 Bags/Sacks	
	2	12	Bentonite 2 l	Bags/Sacks

Seal Method: Hand Mixed

Distance to Property Line (ft.): No Data

Sealed By: Driller

Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion:

Surface Slab Installed

Surface Completion by Driller

Water Level:

No Data

Packers:

No Data

Type of Pump:

No Data

Well Tests:

Water Type

Water Quality:

No Data

No Data

Chemical Analysis Made:

Did the driller knowingly penetrate any strata which

contained injurious constituents?:

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data:

The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information:

Strata Core Services, LLC

112 S. Norwood Drive Hurst, TX 76053

Driller Name:

William Fields

License Number:

No

No

56033

Apprentice Name:

Ryan Spaust

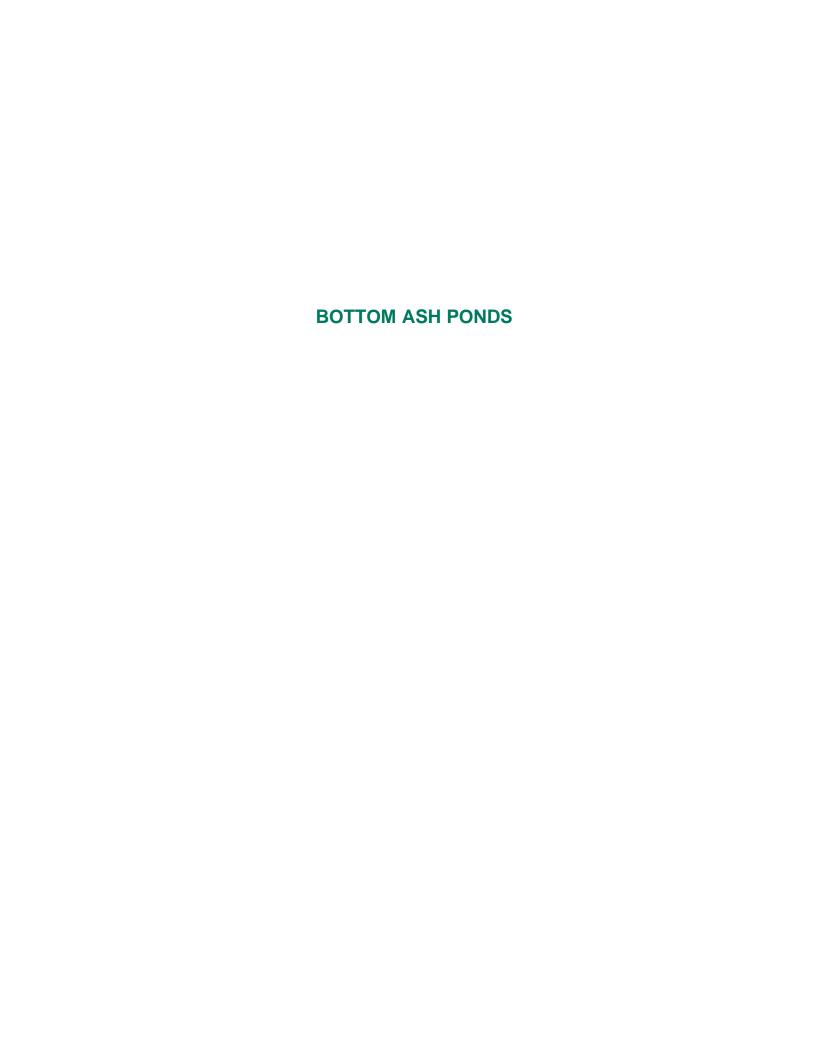
Comments:

No Data

DESCRIPT	Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL				Casing PIPE & WELL		DATA	
Top (ft.)	Bottom (ft.)	Description		Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
0	7	Clayey silt - orangish brown	2	Riser	New Plastic	40	0	15
7	15	Clayey silty - gray to brown	-		(PVC)	12.	-	
15	19	Sand - tan with gray	2	Screen	New Plastic (PVC)	40 10	15	30
19	23	Sand - light orange and tan						
23	30	Sand - reddish brown						

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.


Please include the report's Tracking Number on your written request.

APPENDIX D	GROUNDWATER FLOW DIRECTION MAPS	

All monitoring wells associated with the CCR units were gauged for water levels during the eight background monitoring events between December 2016 and October 2017 and were gauged semi-annually in 2018 and 2019. Potentiometric surface maps that are representative of groundwater water level conditions during these periods are provided in Appendix D. Note: Water levels were also gauged semi-annually in 2020 and these potentiometric surface maps will be provided in the 2020 Annual Groundwater Monitoring and Corrective Action Reports for the CCR units.

Based on the water levels at these CCR units, the following wells were selected as background wells because they were consistently upgradient and/or an evaluation of historical data indicated they were representative of background groundwater conditions as presented in the Written Demonstration – Responses to Potential Statistically Significant Increases dated 27 April 2020:

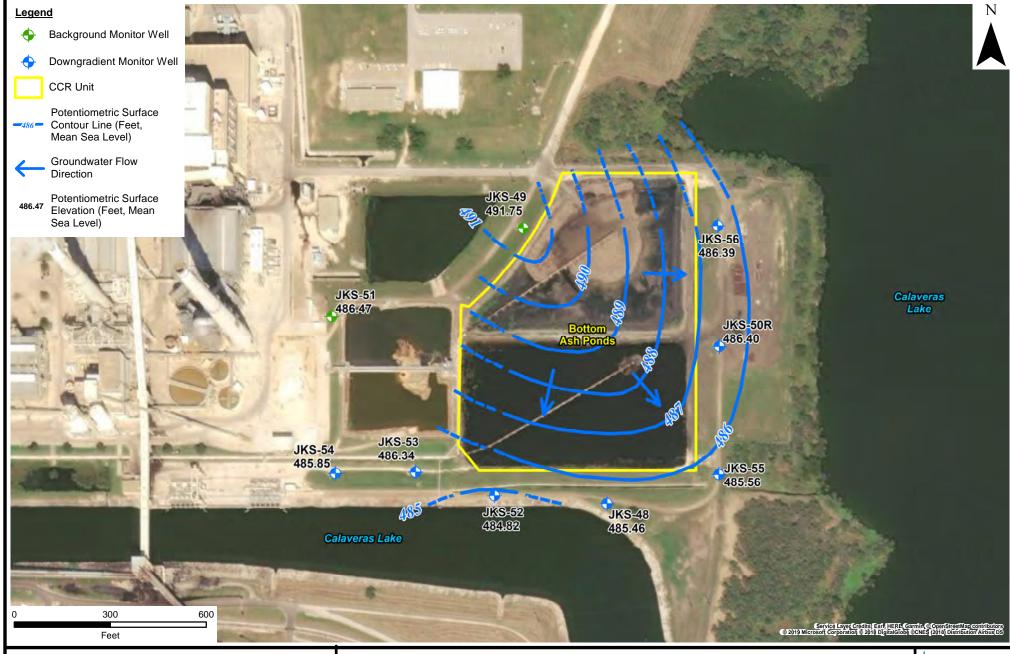
- Bottom Ash Ponds Wells JKS-49 and JKS-51
- Evaporation Pond Wells JKS-63/63R, JKS-47, and JKS-64
- Fly Ash Landfill Wells JKS-57 and JKS-45
- SRH Pond Wells JKS-49 and JKS-51

POTENTIOMETRIC SURFACE MAP – MARCH 2017 Southern CCR Units CPS Energy – Calaveras Power Station San Antonio, Texas

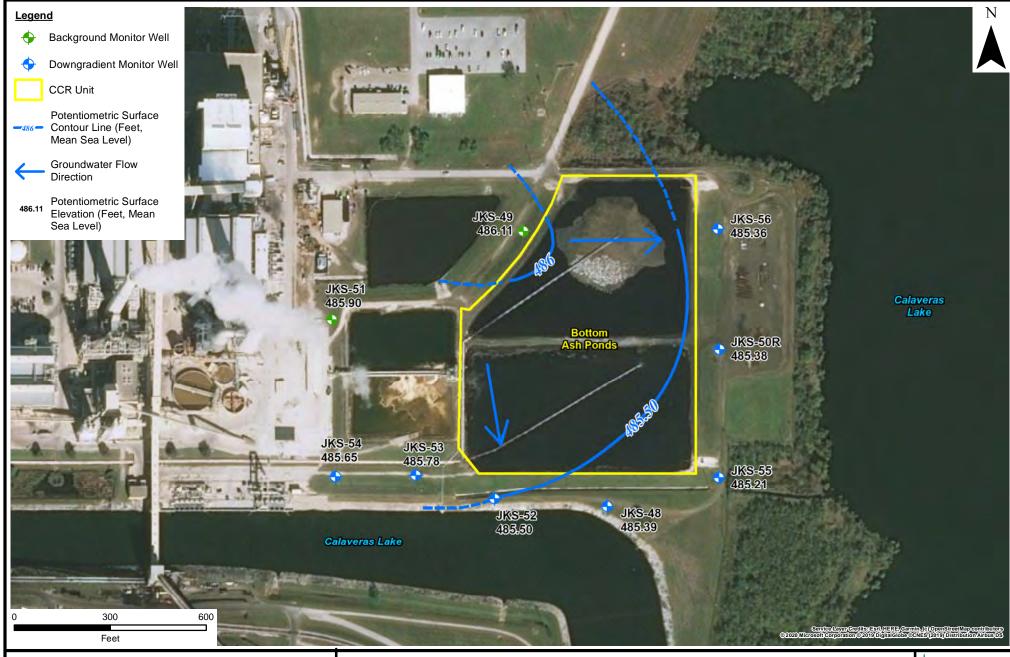
DESIGN: NH DRAWN: EFC CHKD.: WZ

DATE: 1/31/2018 SCALE: AS SHOWN REVISION: 1

P:\Projects\to337367 CPS Energy CCR GW Investigation.WZ\text{Light Background Sampling Events\text{\text{GISIMXDI\text{\text{DISIN}}}} 1


POTENTIOMETRIC SURFACE MAP OCTOBER 2017
Bottom Ash Ponds CCR Unit
CPS Energy - Calaveras Power Station
San Antonio, Texas

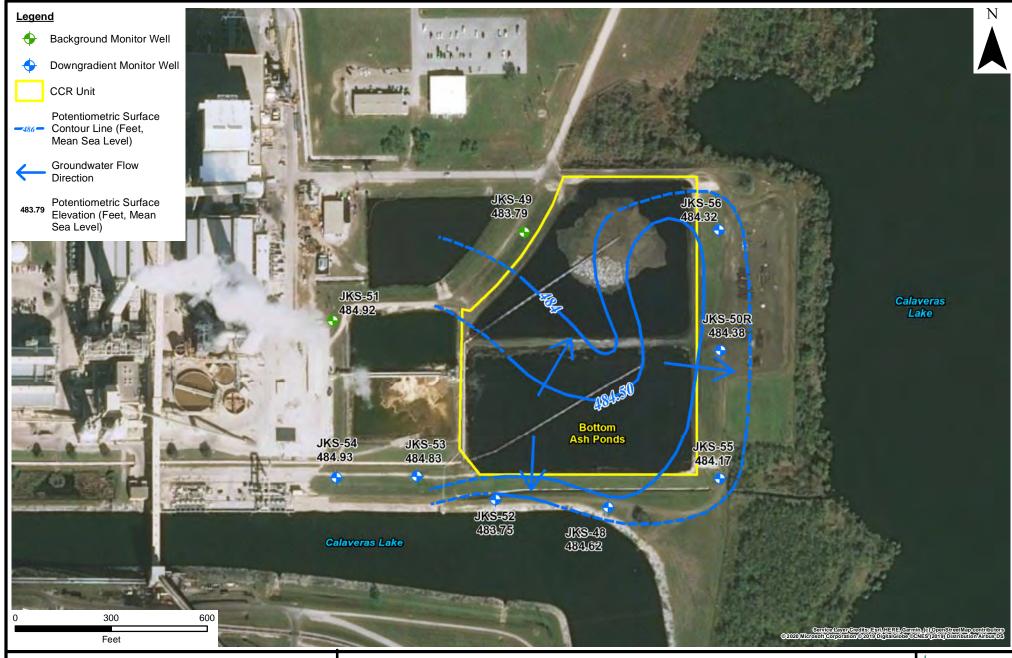
POTENTIOMETRIC SURFACE MAP – April 2018 Bottoms Ash Ponds CCR Unit CPS Energy – Calaveras Power Station San Antonio, Texas


 DESIGN:
 NH
 DRAWN:
 EFC
 CHKD.:
 WZ

 DATE:
 1/14/2019
 SCALE:
 AS SHOWN
 REVISION:
 1

 P:\Projects\0337367 CPSCalv_pmaps
 BotAshPonds
 oct2018.mxd
 Oct2018.mxd
 Oct2018.mxd

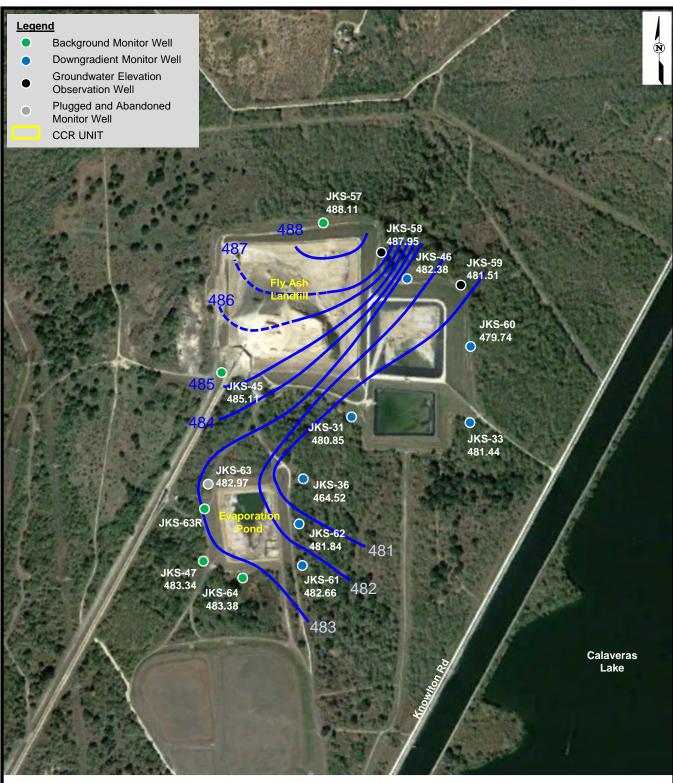
POTENTIOMETRIC SURFACE MAP OCTOBER 2018
Bottom Ash Ponds CCR Unit
CPS Energy - Calaveras Power Station
San Antonio, Texas


DESIGN: NH DRAWN: EFC CHKD.: WZ

DATE: 1/13/2020 SCALE: AS SHOWN REVISION: 1

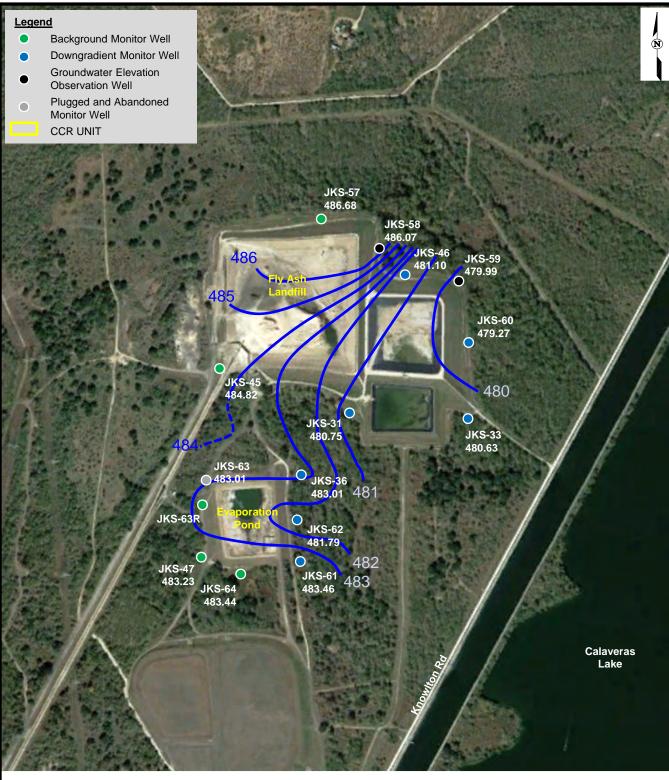
|| Usubouls01\DataHouslon\Projects\0563422\CPS Energy Calaveras 2019 CCR Tasks.WZ\GIS_CAD\MXD\2019gwmon\) |
|| UgaA_050342_CPSCalv_BolAsh\Pond_apr\2019pmap.mxd

POTENTIOMETRIC SURFACE MAP APRIL 2019
Bottom Ash Ponds CCR Unit
CPS Energy - Calaveras Power Station
San Antonio, Texas



DESIGN:	NH	DRAWN:	EFC	CHKD.:	WZ				
DATE:	1/13/2020	SCALE:	AS SHOWN	REVISION:	1				
\lushoufs01\Data\Houston\Projects\0503422 CPS Energy Calaveras 2019 CCR Tasks.WZ\GIS_CAD\MXD\2019gwmon\ fig2B_0503422_CPSCalv_BotAshPond_oct2019pmap.mxd									

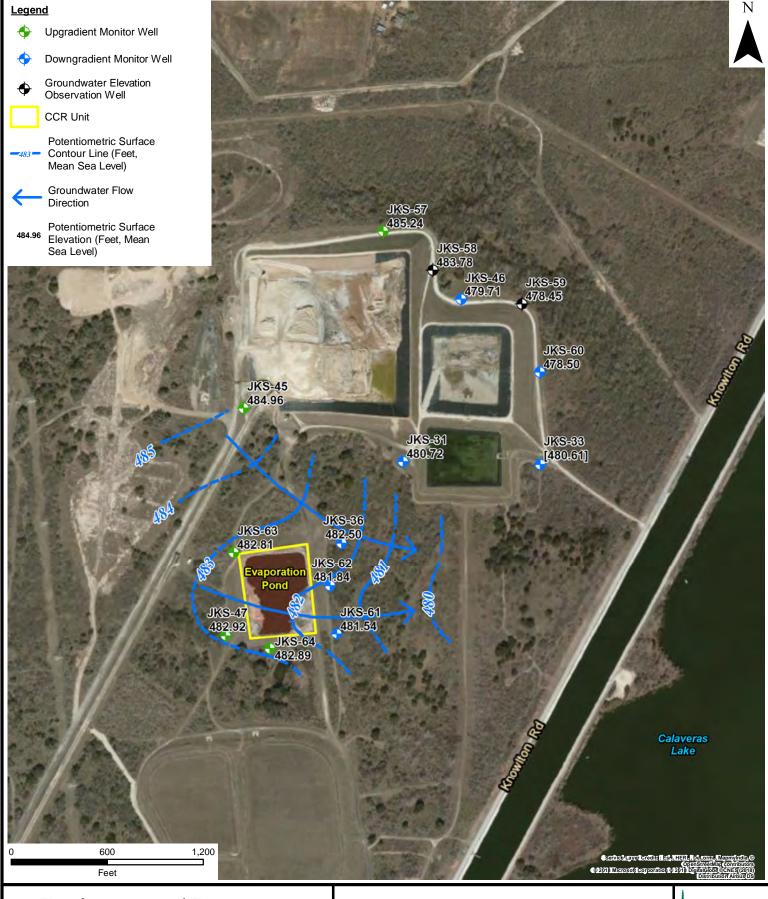
POTENTIOMETRIC SURFACE MAP OCTOBER 2019
Bottom Ash Ponds CCR Unit
CPS Energy - Calaveras Power Station
San Antonio, Texas



Potentiometric surface contour interval is 1 foot.

POTENTIOMETRIC SURFACE MAP – May 2017 Northern CCR Units CPS Energy – Calaveras Power Station San Antonio, Texas

Potentiometric surface contour interval is 1 foot.


POTENTIOMETRIC SURFACE MAP – June 2017 Northern CCR Units CPS Energy – Calaveras Power Station San Antonio, Texas

Potentiometric surface contour interval is 1 foot.

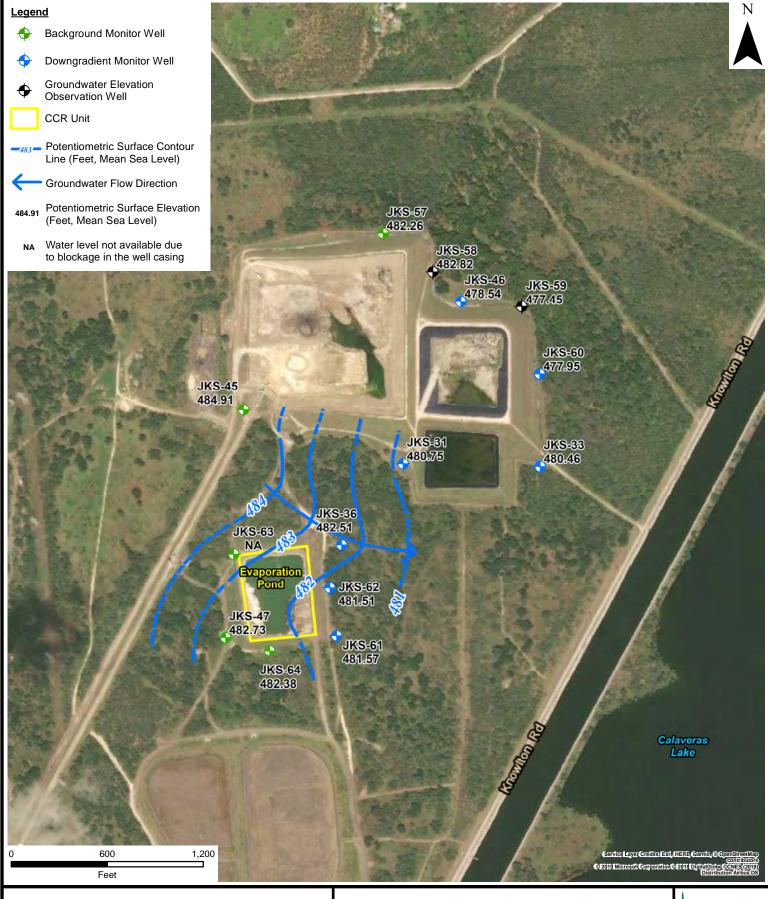
POTENTIOMETRIC SURFACE MAP – August 2017 Northern CCR Units CPS Energy – Calaveras Power Station San Antonio, Texas


 DESIGN:
 NH
 DRAWN:
 EFC
 CHKD.:
 WZ

 DATE:
 1/10/2018
 SCALE:
 AS SHOWN
 REVISION:
 1

 P:Projects\u0337367 CPS Energy CCR GW Investigation. WZ\u00e4Eight Background Sampling Events\u00e4GISIMXD\u00e4017_CAR\u00e4037367
 CPSCalv pmapN EvapPond oct2017.mxd
 WZ

POTENTIOMETRIC SURFACE MAP OCTOBER 2017
Evaporation Pond CCR Unit
CPS Energy - Calaveras Power Station
San Antonio, Texas


 DESIGN:
 NH
 DRAWN:
 AJB
 CHKD.:
 WZ

 DATE:
 10/14/2020
 SCALE:
 AS SHOWN
 REVISION:
 0

 \(\begin{align*}\) \(\text{USION}\) \(\text{PSC}\) \(\text{PSC}\) \(\text{PSC}\) \(\text{USION}\) \(\text{PSC}\) \(\text{PSC}\) \(\text{USION}\) \(\text{PSC}\) \(\text{PSC}\) \(\text{USION}\) \(\text{PSC}\) \(\text{USION}\) \(\text{PSC}\) \(\text{USION}\) \(\

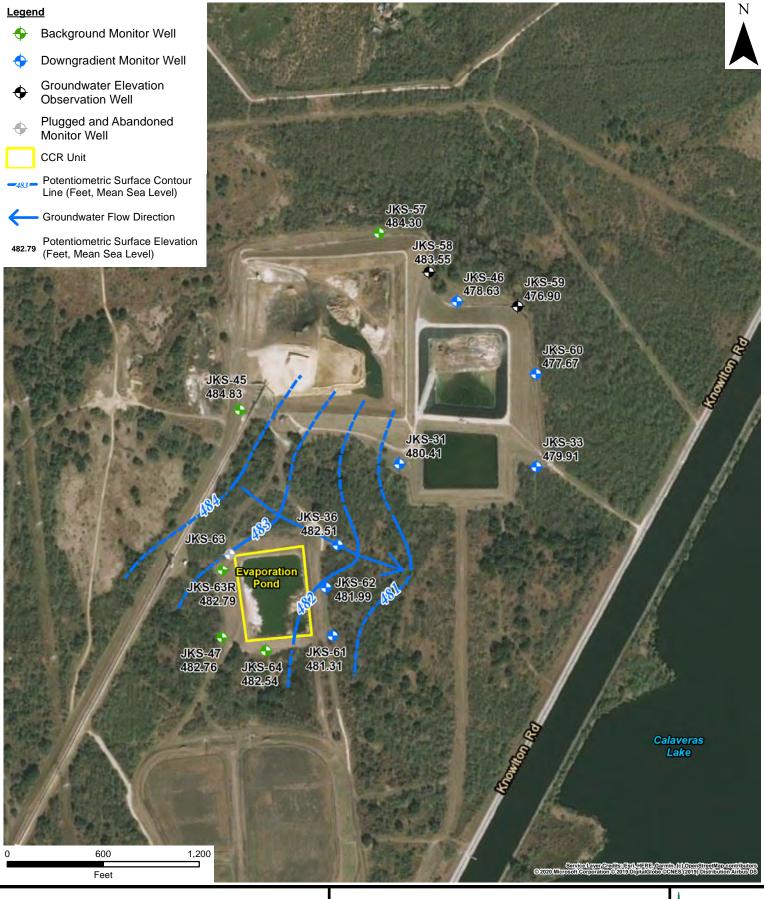
POTENTIOMETRIC SURFACE MAP APRIL 2018
Evaporation Pond CCR Unit
CPS Energy - Calaveras Power Station
San Antonio, Texas

 DESIGN:
 NH
 DRAWN:
 EFC
 CHKD.:
 WZ

 DATE:
 1/14/2019
 SCALE:
 AS SHOWN
 REVISION:
 1

 PyProjects\0337367 CPS Energy CCR GW Investigation.WZ\Sampling Events\2016-17\GIS\MXD\2018\0337367_CPSCalv_pmaph_EvapPond_oct2018.mxd
 VISION:
 1

POTENTIOMETRIC SURFACE MAP OCTOBER 2018
Evaporation Pond CCR Unit
CPS Energy - Calaveras Power Station
San Antonio, Texas

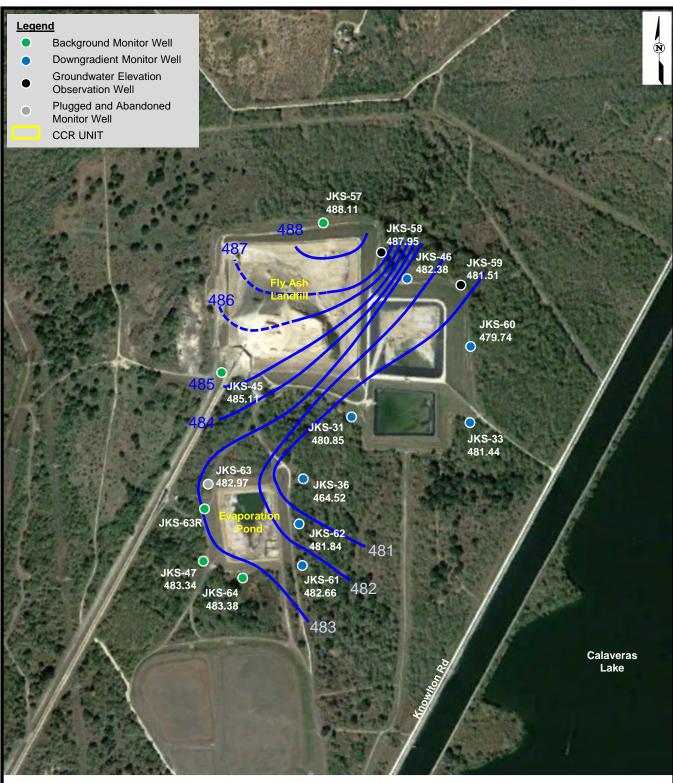

 DESIGN:
 NH
 DRAWN:
 AJB
 CHKD.:
 WZ

 DATE:
 10/13/2020
 SCALE:
 AS SHOWN
 REVISION:
 0

 WusbdrtSQ120ABH00x50F0F1getSl050432 CF CFS Energy Calaveras 2019 CCR Tasks.WZIGIS_CADIWXDI2019gwmon\tag{bgmmo

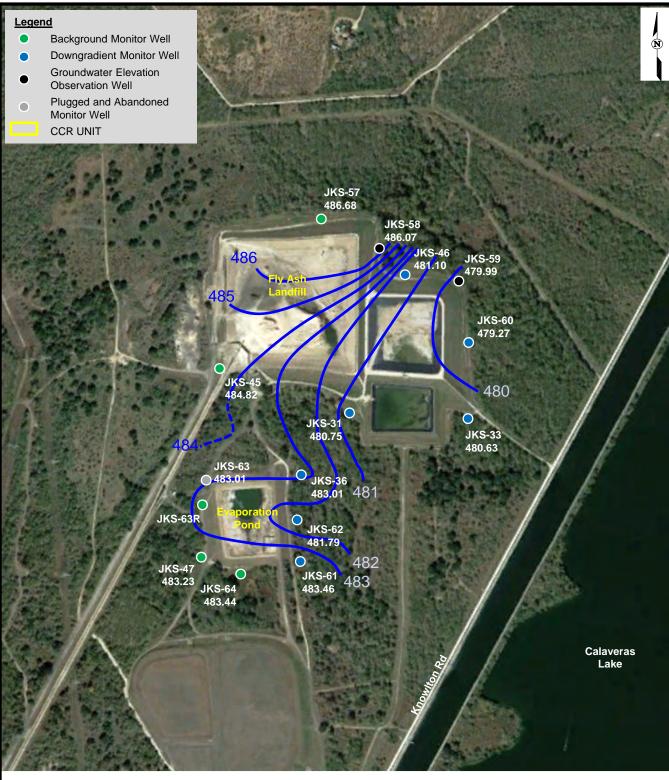
POTENTIOMETRIC SURFACE MAP APRIL 2019
Evaporation Pond CCR Unit
CPS Energy - Calaveras Power Station
San Antonio, Texas

 DESIGN:
 NH
 DRAWN:
 EFC
 CHKD.:
 WZ


 DATE:
 1/15/2020
 SCALE:
 AS SHOWN
 REVISION:
 0

 Nushoufs01\DataHousbon\Projects\0503422
 CPS Energy Calaveras 2019 CCR Tasks.WZ/GIS_CADMXDI2019gwmon\

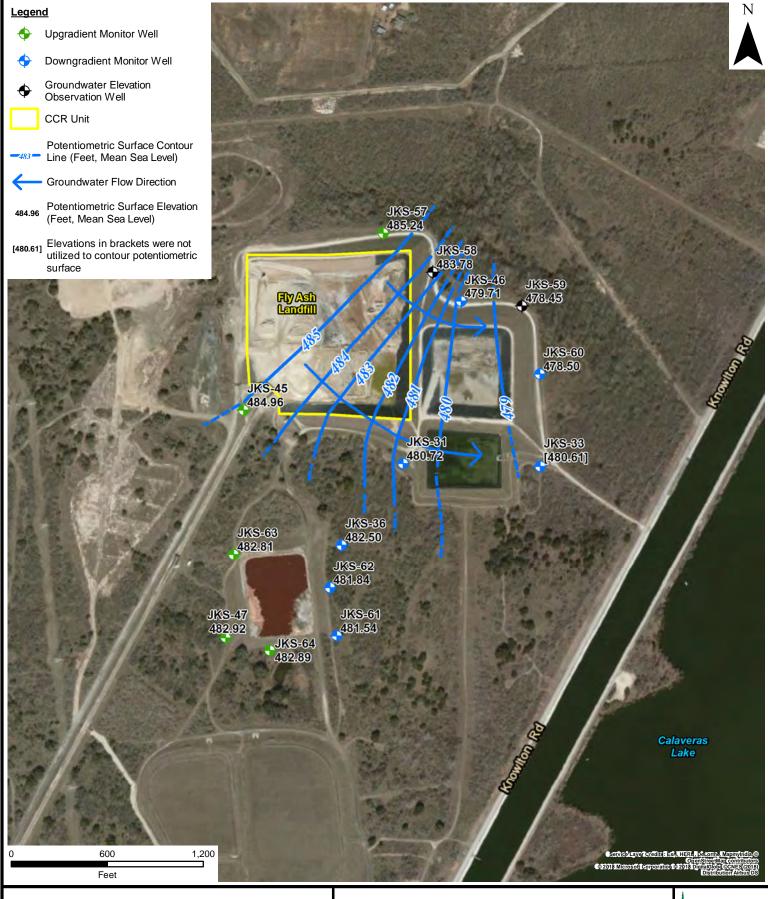
POTENTIOMETRIC SURFACE MAP OCTOBER 2019
Evaporation Pond CCR Unit
CPS Energy - Calaveras Power Station
San Antonio, Texas



Potentiometric surface contour interval is 1 foot.

POTENTIOMETRIC SURFACE MAP – May 2017 Northern CCR Units CPS Energy – Calaveras Power Station San Antonio, Texas

Potentiometric surface contour interval is 1 foot.


POTENTIOMETRIC SURFACE MAP – June 2017 Northern CCR Units CPS Energy – Calaveras Power Station San Antonio, Texas

Potentiometric surface contour interval is 1 foot.

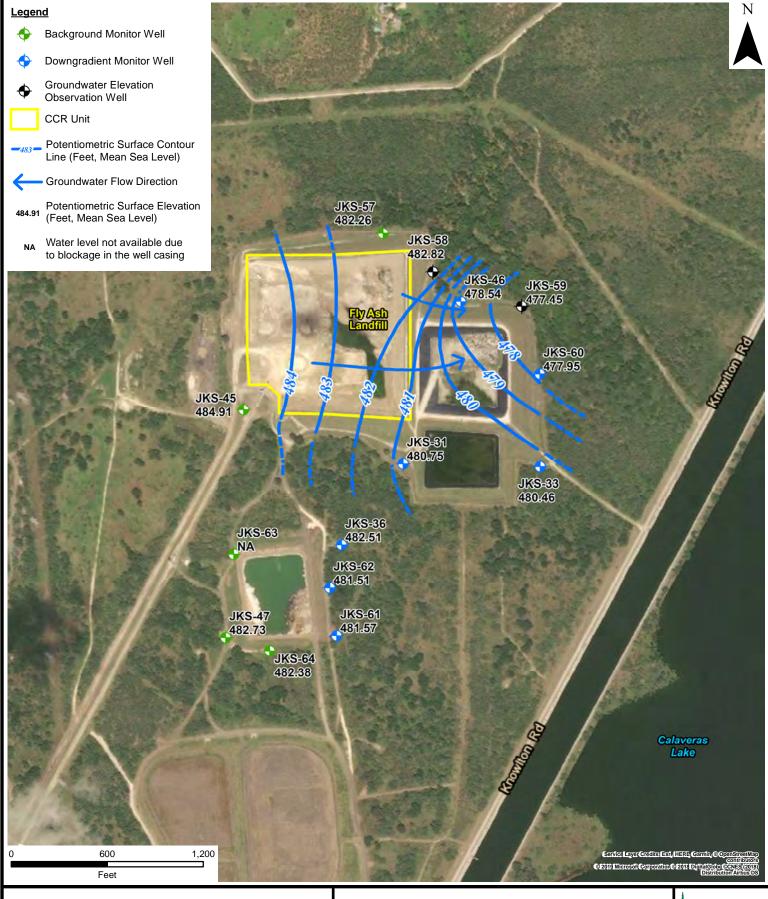
POTENTIOMETRIC SURFACE MAP – August 2017 Northern CCR Units CPS Energy – Calaveras Power Station San Antonio, Texas

 DESIGN:
 NH
 DRAWN:
 EFC
 CHKD.:
 WZ

 DATE:
 1/10/2018
 SCALE:
 AS SHOWN
 REVISION:
 1

 P:Projects\u0337367 CPS Energy CCR GW Investigation. WZ\u00e4Eight Background Sampling Events\u00e4GiSIMXDI\u00e2017_CAR\u00e4037367
 CPSCalv_pmapN_FlyAshLFill_ocl2017.mxd

POTENTIOMETRIC SURFACE MAP OCTOBER 2017
Fly Ash Landfill CCR Unit
CPS Energy - Calaveras Power Station
San Antonio, Texas



Potentiometric surface contour interval is 1 foot.

POTENTIOMETRIC SURFACE MAP – April 2018 Fly Ash Landfill CCR Unit CPS Energy – Calaveras Power Station San Antonio, Texas

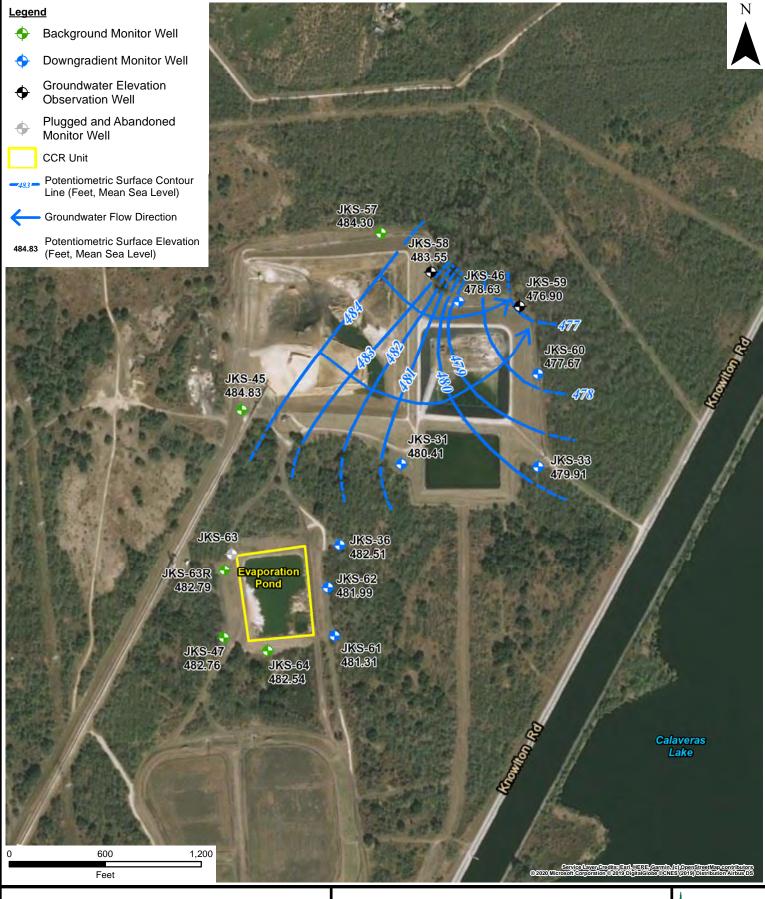
 DESIGN:
 NH
 DRAWN:
 EFC
 CHKD.:
 WZ

 DATE:
 1/14/2019
 SCALE:
 AS SHOWN
 REVISION:
 1

 PyProjects\03337367 CPS Energy CCR GW Investigation.WZ\Sampling Events\2016-17\GIS\MXD\12018\nd{0}
 1
 1

 0337367_CPSCalv_pmapN_FlyAshLFill_oct2018.mxd
 1
 1
 1

POTENTIOMETRIC SURFACE MAP OCTOBER 2018
Fly Ash Landfill CCR Unit
CPS Energy - Calaveras Power Station
San Antonio, Texas

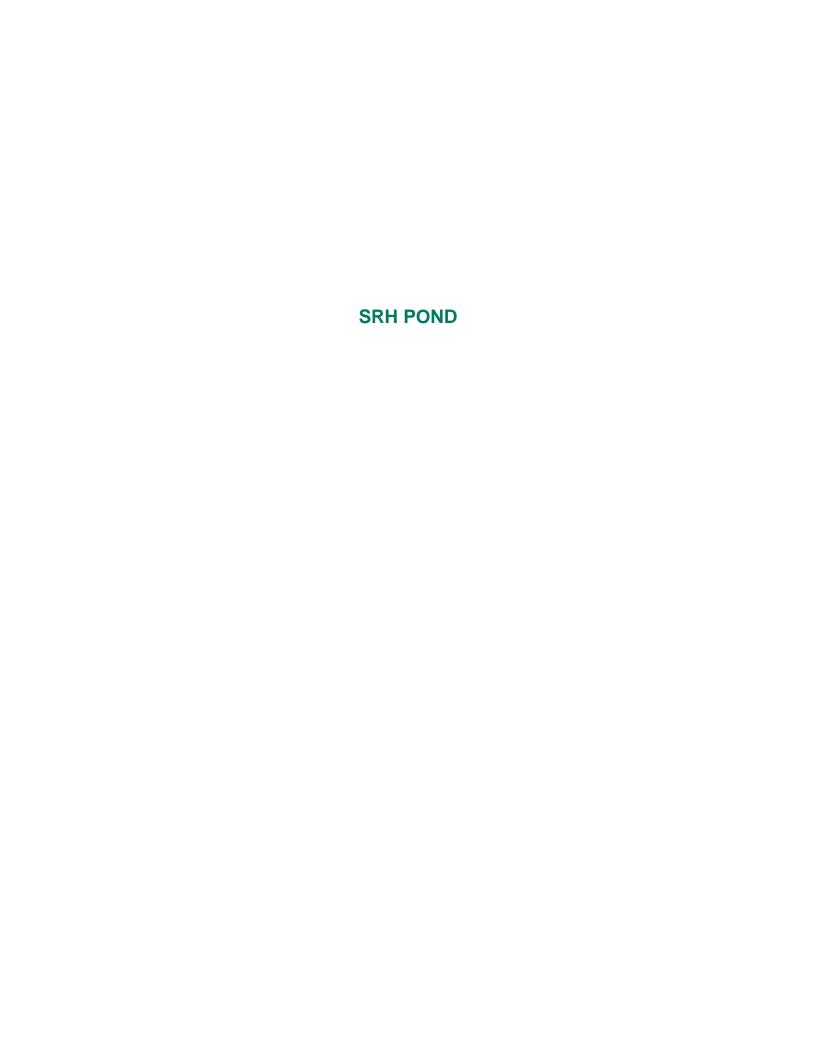


Potentiometric surface contour interval is 1 foot.

POTENTIOMETRIC SURFACE MAP – April 2019 Fly Ash Landfill CCR Unit CPS Energy – Calaveras Power Station San Antonio, Texas

 DESIGN:
 NH
 DRAWN:
 EFC
 CHKD.:
 WZ

 DATE:
 1/15/2020
 SCALE:
 AS SHOWN
 REVISION:
 0

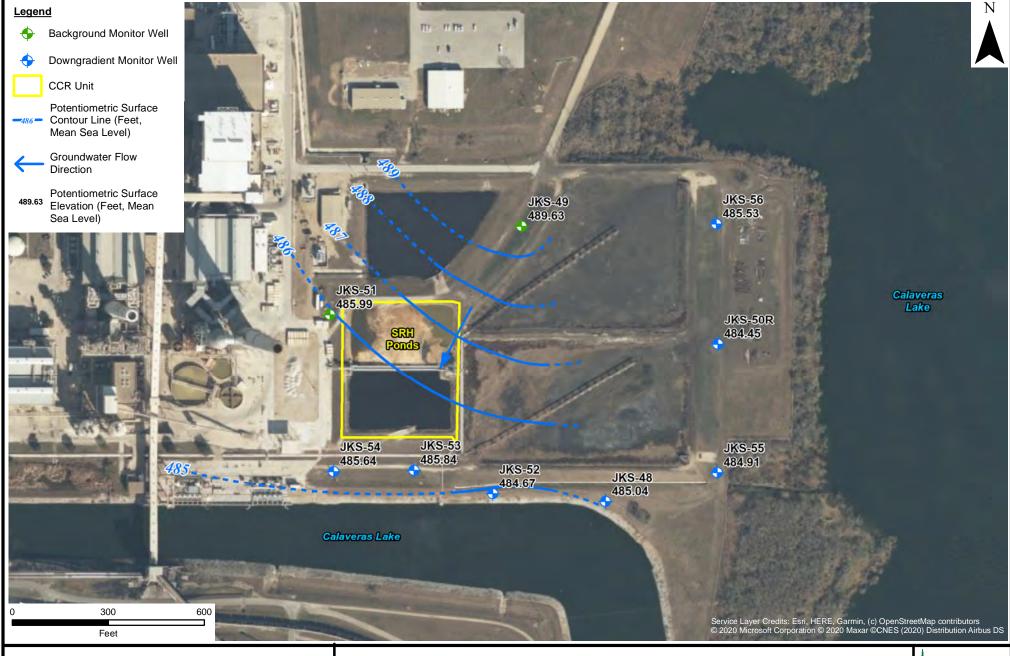

 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:

 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:

 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:
 \understand:

POTENTIOMETRIC SURFACE MAP OCTOBER 2019
Fly Ash Landfill CCR Unit
CPS Energy - Calaveras Power Station
San Antonio, Texas

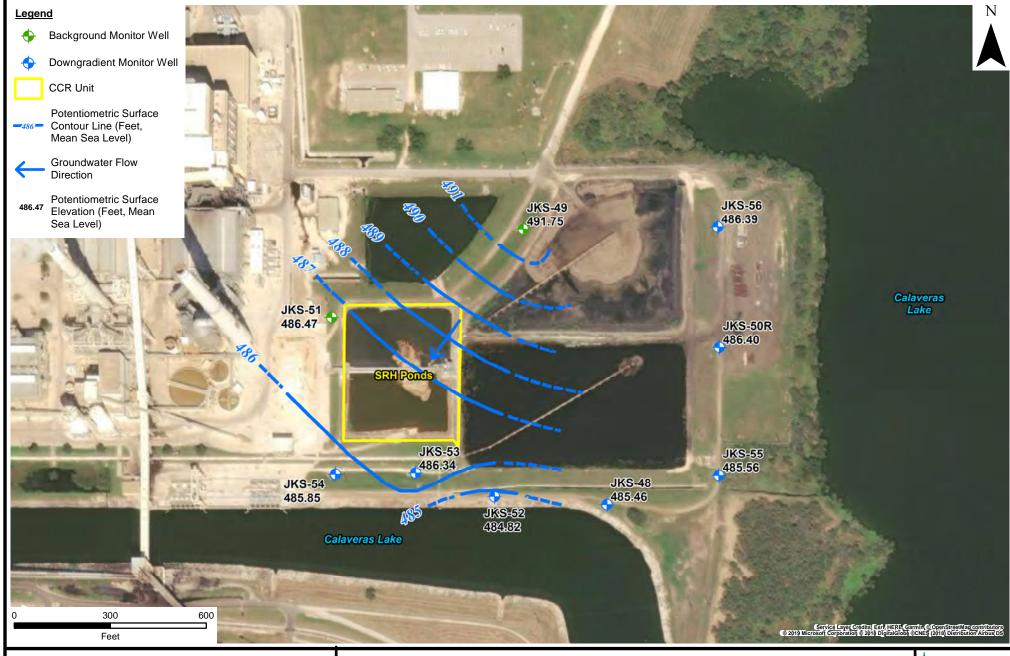
POTENTIOMETRIC SURFACE MAP – MARCH 2017 Southern CCR Units CPS Energy – Calaveras Power Station San Antonio, Texas


DESIGN: NH DRAWN: EFC CHKD.: WZ

DATE: 1/31/2018 SCALE: AS SHOWN REVISION: 1

P:Projectsi0337367 CPS Energy CCR GW Investigation.WZ\Eight Background Sampling Events\GIS\MXD\12017_CAR\
0337367 CPSCalv pmaps SRHPonds or\2017.mxd

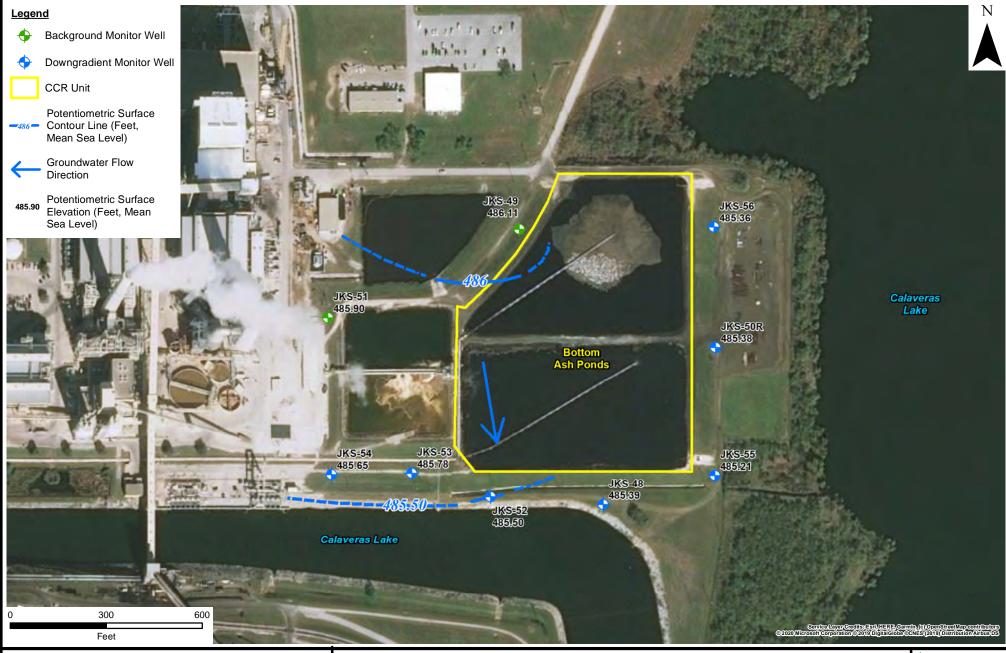
POTENTIOMETRIC SURFACE MAP OCTOBER 2017
SRH Pond CCR Unit
CPS Energy - Calaveras Power Station
San Antonio, Texas


 DESIGN:
 NH
 DRAWN:
 AJB
 CHKD.:
 WZ

 DATE:
 10/13/2020
 SCALE:
 AS SHOWN
 REVISION:
 1

 Nusbdcts02lDataHoustonliProjects0503422 CPS Energy Calaveras 2019 CCR Tasks.WZIGIS_CADMXDl2018gwmon/
 1g2_0503422_CPSCalv_SRHPonds_apz018gmap mxd

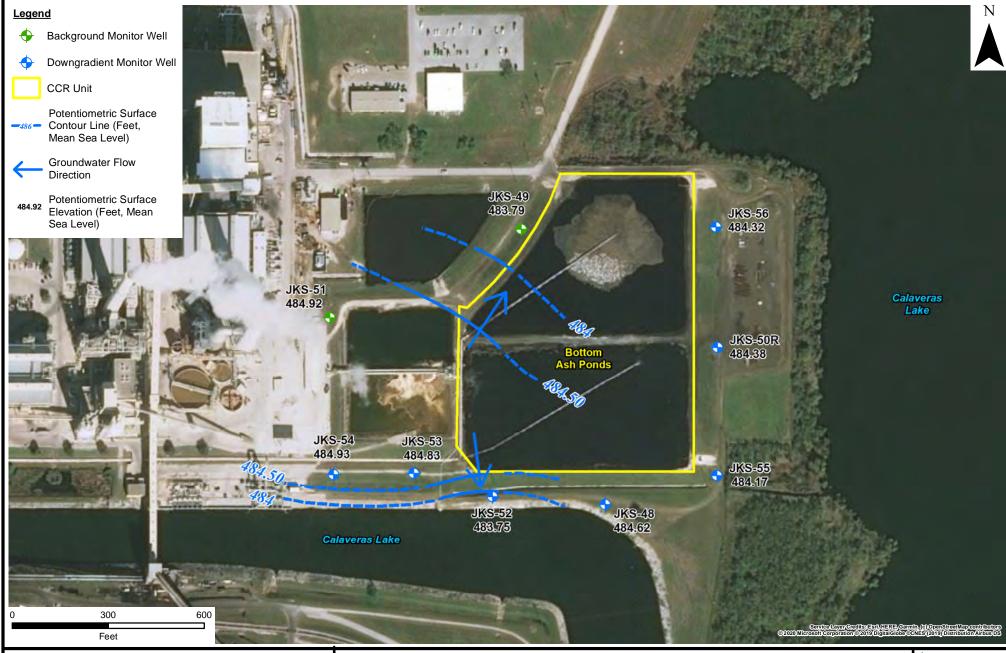
POTENTIOMETRIC SURFACE MAP APRIL 2018
SRH Ponds CCR Unit
CPS Energy - Calaveras Power Station
San Antonio, Texas


 DESIGN:
 NH
 DRAWN:
 EFC
 CHKD.:
 WZ

 DATE:
 1/14/2019
 SCALE:
 AS SHOWN
 REVISION:
 1

 P:\Projects\0337367 CPS Energy CCR GW Investigation.WZ\Sampling Events\2016-17\GIS\MXD\2018\0337367 CPSCalv_pmaps SRHPonds oct2018.mxd
 1

POTENTIOMETRIC SURFACE MAP OCTOBER 2018
SRH Ponds CCR Unit
CPS Energy - Calaveras Power Station
San Antonio, Texas


 DESIGN:
 NH
 DRAWN:
 EFC
 CHKD.:
 WZ

 DATE:
 1/13/2020
 SCALE:
 AS SHOWN
 REVISION:
 1

 !lushoufs01!DatalHouston!Projectsl0503422 CPS Energy Calaveras 2019 CCR Tasks WZIGIS_CADIMXDI2019gwmonl. iig2A_0503422_CPSCalv_SRHPonds_apr2019gmap.mxd
 1

POTENTIOMETRIC SURFACE MAP APRIL 2019
SRH Ponds CCR Unit
CPS Energy - Calaveras Power Station
San Antonio, Texas

DESIGN: NH DRAWN: EFC CHKD.: WZ

DATE: 1/13/2020 SCALE: AS SHOWN REVISION: 1

\[
\begin{align*}
\text{Uushouf601\Data\House\noin\Pi\end{align*}} & \text{Uushouf\noin\Pi\end{align*}} & \text{Dision\text{Vision\text{I}}} & \text{Uishouf\noin\Pi\end{align*}} & \text{In\text{In\text{In\text{Vision\text{In\text{Vision\text{In\text{Vision\text{Vi

POTENTIOMETRIC SURFACE MAP OCTOBER 2019
SRH Ponds CCR Unit
CPS Energy - Calaveras Power Station
San Antonio, Texas

APPENDIX E	CONSTITUENT CONCENTRATIONS SUMMARY TABLES

TABLE 3
Groundwater Analytical Results Summary
CPS Energy - Calaveras Power Station
Bottom Ash Ponds

		JKS-49 Upgradient												
	Sample Date	12/7/16	2/22/17	3/28/17	5/3/17	6/20/17	7/25/17	8/29/17	10/10/17	4/4/18	10/30/18	4/9/19	10/22/19	4/28/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020
Appendix III - Detection Monitoring														
Boron	mg/L	3.24	3.28	3.28	3.03 X	3.04 J	2.76	2.85	2.87	2.71	2.70	2.05	2.58	2.47
Calcium	mg/L	130	146	173	113	127	120	145	147	135	117 D	154 D	127 D	114 J
Chloride	mg/L	295 D	383 D	372 D	326	414 D	448 D	459 D	424	446 D	408	449	429	452
Fluoride	mg/L	0.715	0.643 JH	0.665 JH	0.809	0.627 JH	0.617 JH	0.525	0.712	0.697	0.719	0.749	0.793	0.894
Sulfate	mg/L	211 D	232 D	234 D	194	218 D	227	265 D	219 X	237	237	240	205	217
pH - Field Collected	SU	7.19	7.12	7.12	7.02	7.06	6.16	7.05	6.89	7.12	7.12	7.31	6.43	7.15
Total dissolved solids	mg/L	1250	1240	1190	1100	1450	1440	1490	1730	1310	1210	1290	1380	1240
Appendix IV - Assessment	Monitoring													
Antimony	mg/L	0.00120 U	0.000240 U	0.000240 U	0.00173 J	0.00120 U	0.000240 U	0.000240 U	0.000240 U	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00123 U	0.000676 J	0.000729 J	0.00123 U	0.00123 U	0.000544 J	0.000538 J	0.000478 J	NR	NR	NR	NR	NR
Barium	mg/L	0.0607	0.0575	0.0503	0.0554	0.0783	0.0721	0.0788	0.0735	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000654 U	0.000131 U	0.000131 U	0.000654 U	0.000654 U	0.000131 U	0.000131 U	0.000131 U	NR	NR	NR	NR	NR
Cadmium	mg/L	0.000734 U	0.000147 U	0.000147 U	0.000734 U	0.000734 U	0.000147 U	0.000147 U	0.000147 U	NR	NR	NR	NR	NR
Chromium	mg/L	0.00262 U	0.000859 J	0.000572 J	0.00262 U	0.00262 U	0.000963 J	0.000997 J	0.00113 J	NR	NR	NR	NR	NR
Cobalt	mg/L	0.00102 J	0.00109 J	0.00124 J	0.00155 J	0.00133 J	0.00153 J	0.00155 J	0.00146 J	NR	NR	NR	NR	NR
Fluoride	mg/L	0.715	0.643 JH	0.665 JH	0.809	0.627 JH	0.617 JH	0.525	0.712	NR	NR	NR	NR	NR
Lead	mg/L	0.000758 U	0.000152 U	0.000152 U	0.000758 U	0.000758 U	0.000155 J	0.000152 U	0.000152 U	NR	NR	NR	NR	NR
Lithium	mg/L	0.000476 U	0.000476 U	0.00238 U	0.0137 J	0.0341	0.0295	0.0427	0.0252	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 U	0.0000263 U	0.0000263 U	0.0000690 J	0.0000263 U	0.0000490 J	0.0000263 U	0.0000263 U	NR	NR	NR	NR	NR
Molybdenum	mg/L	0.00779 J	0.00846	0.00875	0.0106	0.00908 J	0.00938	0.0107	0.0111	NR	NR	NR	NR	NR
Selenium	mg/L	0.00992 J	0.00597	0.00479	0.00521 J	0.00370 J	0.00235	0.00188 J	0.00141 J	NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000332 U	0.000332 U	0.00166 U	0.00166 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR
Radium-226	pCi/L	0.198 ± 0.197	0.615 ± 0.272	0.747 ± 0.323	0.195 ± 0.167	0.294 ± 0.192	0.241 ± 0.193	0.159 ± 0.191	0.746 ± 0.274	NR	NR	NR	NR	NR
Radium-228	pCi/L	2.1 ± 0.907	-1.37 ± 1.37	0.854 ± 0.724	1.08 ± 1.72	2.23 ± 0.949	0.658 ± 0.636	0.812 ± 0.604	1.43 ± 0.898	NR	NR	NR	NR	NR

NOTES:

mg/L: Milligrams per Liter. SU: Standard Units.

pCi/L: Picocuries per Liter.

- --: Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- H: Bias in sample result likely to be high.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- L: Bias in sample result likely to be low.
- NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3 Groundwater Analytical Results Summary CPS Energy - Calaveras Power Station Bottom Ash Ponds

							JKS-51 Up	gradient						_
	Sample Date	12/8/16	2/22/17	3/28/17	5/3/17	6/21/17	7/25/17	8/29/17	10/10/17	4/4/18	10/30/18	4/9/19	10/22/19	4/28/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020
Appendix III - Detection Mo	onitoring													
Boron	mg/L	0.512	0.517	0.473	0.565	0.512	0.525	0.453	0.509	0.465	0.347	0.489	0.648	0.627
Calcium	mg/L	267	292	322	266	261 X	232	236	256	246	149 D	328	336 D	334 J
Chloride	mg/L	403 D	331 D	414 D	447	424 D	455 D	384 D	375	395 D	301	559	574 D	555
Fluoride	mg/L	0.247	0.341 JH	0.415 JH	0.534	0.354	0.391	0.0960 U	0.407 JH	0.305 J	0.291 J	0.329 J	0.405 J	0.470
Sulfate	mg/L	293 D	330 D	348 D	359	342 D	330 D	314 D	302	354 D	260	428	405 D	439
pH - Field Collected	SU	6.59	6.51	6.48	6.56	6.40	5.48	6.38	6.20	6.44	6.70	6.66	5.73	6.43
Total dissolved solids	mg/L	1650	1650	1490	1980	1530	1580	1390	1650	1320	916	1890	2150	2010
Appendix IV - Assessment	Monitoring													
Antimony	mg/L	0.00120 U	0.000240 U	0.000240 U	0.00120 U	0.000953 J	0.000240 U	0.000240 U	0.000240 U	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00123 U	0.000412 J	0.000390 J	0.00123 U	0.000392 J	0.000344 J	0.000395 J	0.000418 J	NR	NR	NR	NR	NR
Barium	mg/L	0.0655	0.0563	0.0517	0.0512	0.0534	0.0520	0.0520	0.0564	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000654 U	0.000131 U	0.000131 U	0.000654 U	0.000212 J	0.000131 U	0.000131 U	0.000131 U	NR	NR	NR	NR	NR
Cadmium	mg/L	0.000734 U	0.000147 U	0.000147 U	0.000734 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	NR	NR	NR	NR	NR
Chromium	mg/L	0.00262 U	0.000941 J	0.000525 U	0.00262 U	0.000657 J	0.000874 J	0.00113 J	0.00133 J	NR	NR	NR	NR	NR
Cobalt	mg/L	0.000350 U	0.0000770 J	0.0000920 J	0.000350 U	0.000124 J	0.0000940 J	0.0000800 J	0.000108 J	NR	NR	NR	NR	NR
Fluoride	mg/L	0.247	0.341 JH	0.415 JH	0.534	0.354	0.391	0.0960 U	0.407 JH	NR	NR	NR	NR	NR
Lead	mg/L	0.000758 U	0.000152 U	0.000152 U	0.000758 U	0.000152 U	0.000152 U	0.000152 U	0.000152 U	NR	NR	NR	NR	NR
Lithium	mg/L	0.000476 U	0.000476 U	0.00238 U	0.0322	0.0874	0.0790	0.0958 JX	0.0718	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 U	0.000199 J	0.0000263 U	0.0000263 U	NR	NR	NR	NR	NR				
Molybdenum	mg/L	0.00128 U	0.000255 U	0.000255 U	0.00128 U	0.000255 U	0.000255 U	0.000255 U	0.000255 U	NR	NR	NR	NR	NR
Selenium	mg/L	0.00227 U	0.000454 U	0.000454 U	0.00227 U	0.000454 U	0.000454 U	0.000454 U	0.000454 U	NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000332 U	0.000332 U	0.00166 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR
Radium-226	pCi/L	1.09 ± 0.376	0.104 ± 0.122	0.618 ± 0.247	0.197 ± 0.145	0.328 ± 0.195	0.0847 ± 0.186	4.83 ± 0.763	0.682 ± 0.309	NR	NR	NR	NR	NR
Radium-228	pCi/L	0.312 ± 0.688	1.09 ± 1.37	2.32 ± 1.45	-1.26 ± 1.37	-0.799 ± 0.928	1.57 ± 0.786	0.762 ± 0.706	0.963 ± 0.954	NR	NR	NR	NR	NR

mg/L: Milligrams per Liter.

SU: Standard Units.

- --: Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- H: Bias in sample result likely to be high.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- L: Bias in sample result likely to be low.
- NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3 Groundwater Analytical Results Summary CPS Energy - Calaveras Power Station Bottom Ash Ponds

	[JK	S-48 Downgradie	ent					
	Sample Date	12/7/16	2/22/17	3/30/17	5/2/17	6/20/17	7/25/17	8/29/17	10/10/17	4/4/18	10/30/18	4/9/19	10/22/19	4/28/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020
Appendix III - Detection M	onitoring													
Boron	mg/L	2.21	2.14	1	2.08	2.13	2.15 X	2.02	2.23	2.03	2.13	2.22	2.27	2.36
Calcium	mg/L	130	139	125	NR	111	136 X	134	147	143	128 D	166 D	135 D	130 J
Chloride	mg/L	395 D	408 D	435 D	427	440 D	465 D	166 D	427	433 D	438	467	446	485
Fluoride	mg/L	1.43	1.21 JH	1.62	1.41 JH	1.07	1.62	0.0960 U	1.22	1.35	1.31	1.46	1.25	0.051 JH
Sulfate	mg/L	239 D	251 D	266 D	259	253 D	244	140 D	257	282 D	266	271	213	206
pH - Field Collected	SU	7.06	6.92	6.86	6.99	6.88	5.92	6.90	6.74	6.91	6.92	7.06	6.12	6.89
Total dissolved solids	mg/L	1400	1270	1440	1490	1540	1380 J	850	1470	1400	1410	1420	1520	1400
Appendix IV - Assessmen	t Monitoring													
Antimony	mg/L	0.00120 U	0.000240 U	-	0.000240 U	0.00120 U	0.00129 J	0.000240 U	0.000240 U	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00123 U	0.000538 J	-	0.000424 J	0.00123 U	0.000452 J	0.000459 J	0.000475 J	NR	NR	NR	NR	NR
Barium	mg/L	0.0717	0.0699		0.0659	0.0686	0.0769	0.0725	0.0761	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000654 U	0.000131 U		0.000131 U	0.000654 U	0.000233 J	0.000131 U	0.000131 U	NR	NR	NR	NR	NR
Cadmium	mg/L	0.000734 U	0.000147 U	-	0.000147 U	0.000734 U	0.000147 U	0.000147 U	0.000147 U	NR	NR	NR	NR	NR
Chromium	mg/L	0.00262 U	0.000608 J	-	0.000525 U	0.00262 U	0.000525 U	0.000863 J	0.00130 J	NR	NR	NR	NR	NR
Cobalt	mg/L	0.00111 J	0.000844 J	-	0.000920 J	0.000987 J	0.00137 J	0.000917 J	0.00106 J	NR	NR	NR	NR	NR
Fluoride	mg/L	1.43	1.21 JH	1.62	1.41	1.07	1.62	0.0960 U	1.22	NR	NR	NR	NR	NR
Lead	mg/L	0.000758 U	0.000152 U		0.000152 U	0.000758 U	0.000152 U	0.000152 U	0.000203 J	NR	NR	NR	NR	NR
Lithium	mg/L	0.000476 U	0.000476 U	0.00238 U	NR	0.0536	0.0501	0.0700	0.0551	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 U	0.0000263 U	0.0000263 U	0.0000310 JX	0.0000263 U	0.0000263 UX	0.0000263 U	0.0000263 U	NR	NR	NR	NR	NR
Molybdenum	mg/L	0.00128 U	0.000422 J		0.000263 J	0.00128 U	0.000344 J	0.000255 U	0.000255 U	NR	NR	NR	NR	NR
Selenium	mg/L	0.00227 U	0.000454 U		0.000454 U	0.00227 U	0.000454 U	0.000454 U	0.000454 U	NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000332 U		0.000332 U	0.00166 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR
Radium-226	pCi/L	0.139 ± 0.250	0.251 ± 0.149	0.0232 ± 0.136	0.357 ± 0.174	0.46 ± 0.235	0.544 ± 0.259	0.562 ± 0.283	0.26 ± 0.241	NR	NR	NR	NR	NR
Radium-228	pCi/L	0.847 ± 1.14	0.317 ± 1.15	1.1 ± 0.737	-0.109 ± 1.35	0.284 ± 0.662	0.273 ± 0.867	0.459 ± 0.649	0.772 ± 0.931	NR	NR	NR	NR	NR

mg/L: Milligrams per Liter.

SU: Standard Units.

- --: Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- H: Bias in sample result likely to be high.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- L: Bias in sample result likely to be low.
- NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3 Groundwater Analytical Results Summary CPS Energy - Calaveras Power Station Bottom Ash Ponds

							JKS	-50R Downgradie	nt					
	Sample Date	12/7/16	2/22/17	3/28/17	5/3/17	6/20/17	7/25/17	8/29/17	10/10/17	4/4/18	10/30/18	4/9/19	10/22/19	4/28/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020
Appendix III - Detection Mo	onitoring													
Boron	mg/L	4.70	5.18	5.87	5.92	4.87	4.38	4.18	4.54	3.52	5.17	5.85	6.93	5.52
Calcium	mg/L	126	134	189	120	125	108	130	132	127	116 D	159 D	135 D	126 J
Chloride	mg/L	47.7 X	49.0 J	63.9	81.3	111	123	141 D	100	170	87.9	70.0	60.3	102
Fluoride	mg/L	0.316	0.331 JH	0.447 JH	0.528	0.387 JH	0.390 JH	0.0960 U	0.427 JH	0.335 J	0.392 J	0.319 J	0.380 J	0.510
Sulfate	mg/L	137 X	146	156	160	146	148	195 D	144	131	141	168	172	194
pH - Field Collected	SU	6.83	6.77	NR	6.80	6.63	5.69	6.62	6.43	6.67	6.61	6.80	5.85	6.65
Total dissolved solids	mg/L	737	808	789	902	914	856	992	947	883	688	842	899	918
Appendix IV - Assessment	Monitoring													
Antimony	mg/L	0.00120 U	0.000240 U	0.000240 U	0.00120 U	0.00120 U	0.000240 U	0.000240 U	0.000240 U	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00123 U	0.00111 J	0.000735 J	0.00123 U	0.00123 U	0.000520 J	0.000545 J	0.000596 J	NR	NR	NR	NR	NR
Barium	mg/L	0.133	0.128	0.113	0.117	0.125	0.117	0.123	0.118	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000654 U	0.000147 J	0.000187 J	0.000654 U	0.000654 U	0.000131 U	0.000131 U	0.000174 J	NR	NR	NR	NR	NR
Cadmium	mg/L	0.000734 U	0.000147 U	0.000147 U	0.000734 U	0.000734 U	0.000147 U	0.000147 U	0.000189 J	NR	NR	NR	NR	NR
Chromium	mg/L	0.00262 U	0.00251 J	0.00169 J	0.00262 U	0.00262 U	0.000788 J	0.000759 J	0.00108 J	NR	NR	NR	NR	NR
Cobalt	mg/L	0.00305 J	0.00345	0.00251	0.00215 J	0.00191 J	0.00216	0.00233	0.00285	NR	NR	NR	NR	NR
Fluoride	mg/L	0.316	0.331 JH	0.447 JH	0.528	0.387 JH	0.390 JH	0.0960 U	0.427 JH	NR	NR	NR	NR	NR
Lead	mg/L	0.000796 J	0.000988 J	0.000627 J	0.000758 U	0.000758 U	0.000178 J	0.000152 U	0.000168 J	NR	NR	NR	NR	NR
Lithium	mg/L	0.000476 U	0.000476 U	0.00238 U	0.000476 U	0.00209 J	0.000476 U	0.00621 J	0.000476 U	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	NR	NR	NR	NR	NR
Molybdenum	mg/L	0.00150 J	0.00153 J	0.00125 J	0.00128 U	0.00128 U	0.00102 J	0.00104 J	0.00108 J	NR	NR	NR	NR	NR
Selenium	mg/L	0.00227 U	0.000514 J	0.000454 U	0.00227 U	0.00227 U	0.000454 U	0.000454 U	0.000454 U	NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000332 U	0.000332 U	0.00166 U	0.00166 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR
Radium-226	pCi/L	0.102 ± 0.173	0.479 ± 0.216	-0.0714 ± 0.168	0.197 ± 0.183 U	0.245 ± 0.204	0.408 ± 0.226	0 ± 0.176	0.815 ± 0.292	NR	NR	NR	NR	NR
Radium-228	pCi/L	1.99 ± 1.31	-0.428 ± 1.24	0.665 ± 1.14	0.00273 ± 1.33 U	0.783 ± 0.638	1.08 ± 0.832	0.0172 ± 1.12	1.5 ± 0.842	NR	NR	NR	NR	NR

mg/L: Milligrams per Liter.

SU: Standard Units.

- --: Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- H: Bias in sample result likely to be high.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- L: Bias in sample result likely to be low.
- NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3 Groundwater Analytical Results Summary CPS Energy - Calaveras Power Station Bottom Ash Ponds

							JK	S-52 Downgradie	ent					
	Sample Date	12/7/16	2/21/17	3/28/17	5/2/17	6/21/17	7/25/17	8/29/17	10/10/17	4/4/18	10/30/18	4/9/19	10/22/19	4/28/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020
Appendix III - Detection M	onitoring													
Boron	mg/L	1.66	2.11	1.63	1.51	1.33	1.43	1.46	1.71 X	1.95	1.54	1.46 X	1.65	2.05
Calcium	mg/L	169	181	189		145	140	162	168	175	153 D	195 DX	171 D	174 J
Chloride	mg/L	331 D	377 D	323 DX	320	326 D	343 D	417 D	355	360 D	326	336	320	433
Fluoride	mg/L	0.796	0.665	0.718 JH	0.915 JH	0.705	0.996 JH	0.0960 U	0.740	0.720	0.710	0.831	0.808	0.908
Sulfate	mg/L	277 D	318 D	299 DX	290	287 D	292 D	171 D	289	278 D	292	268	288 D	315
pH - Field Collected	SU	7.01	6.47	6.91	6.94	6.87	5.87	6.81	6.63	6.79	6.76	6.91	6.00	6.83
Total dissolved solids	mg/L	1290	1380	1100	1250	1280	1250	1250	1220	1240	1210	1170	1270	1470
Appendix IV - Assessmen	t Monitoring													
Antimony	mg/L	0.00120 U	0.000240 U	0.000240 U	0.000240 U	0.000240 U	0.000240 U	0.000240 U	0.000240 U	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00123 U	0.000565 J	0.000398 J	0.000425 J	0.000427 J	0.000392 J	0.000412 J	0.000448 J	NR	NR	NR	NR	NR
Barium	mg/L	0.0646	0.0583	0.0519	0.0483	0.0527	0.0558	0.0565	0.0616	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000654 U	0.000131 U	0.000131 U	0.000131 U	0.000131 U	0.000131 U	0.000131 U	0.000153 J	NR	NR	NR	NR	NR
Cadmium	mg/L	0.000734 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	NR	NR	NR	NR	NR
Chromium	mg/L	0.00262 U	0.000525 U	0.000525 U	0.000525 U	0.000841 J	0.000860 J	0.00123 J	0.00108 J	NR	NR	NR	NR	NR
Cobalt	mg/L	0.00188 J	0.00233	0.00112 J	0.00119 J	0.00211	0.00183 J	0.00159 J	0.00189 J	NR	NR	NR	NR	NR
Fluoride	mg/L	0.796	0.665	0.718 JH	0.915 JH	0.705	0.996 JH	0.0960 U	0.740	NR	NR	NR	NR	NR
Lead	mg/L	0.000758 U	0.000152 U	0.000152 U	0.000152 U	0.000292 J	0.000152 U	0.000152 U	0.000163 J	NR	NR	NR	NR	NR
Lithium	mg/L	0.000476 U	0.0471	0.000476 U		0.0616	0.0605	0.0827	0.0588	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 U	0.000234	0.0000263 U	0.0000263 U	0.0000263 U	0.0000810 J	0.0000263 U	0.0000263 UX	NR	NR	NR	NR	NR
Molybdenum	mg/L	0.00128 U	0.00128 J	0.00115 J	0.00102 J	0.000911 J	0.000865 J	0.000843 J	0.000914 J	NR	NR	NR	NR	NR
Selenium	mg/L	0.00227 U	0.000454 U	0.000454 U	0.000454 U	0.000454 U	0.000454 U	0.000454 U	0.000454 U	NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR
Radium-226	pCi/L	1.71 ± 0.465	0.608 ± 0.289	0.296 ± 0.169	0 ± 0.150	0.435 ± 0.241	0.449 ± 0.196	0.194 ± 0.194	0.704 ± 0.319	NR	NR	NR	NR	NR
Radium-228	pCi/L	2.65 ± 1.12	0.744 ± 0.833	0.0645 ± 0.649	0.53 ± 1.10	0.928 ± 0.784	1.16 ± 0.867	0.716 ± 0.767	1.54 ± 1.22	NR	NR	NR	NR	NR

mg/L: Milligrams per Liter.

SU: Standard Units.

- --: Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- H: Bias in sample result likely to be high.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- L: Bias in sample result likely to be low.
- NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3 Groundwater Analytical Results Summary CPS Energy - Calaveras Power Station Bottom Ash Ponds

	Ī						JK	S-55 Downgradien	t					
	Sample Date	12/7/16	2/22/17	3/28/17	5/3/17	6/20/17	7/25/17	8/29/17	10/10/17	4/4/18	10/30/18	4/9/19	10/22/19	4/28/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020
Appendix III - Detection Mo	onitoring													
Boron	mg/L	0.716	0.716	0.785	0.710	0.787	0.651	0.687	0.759	0.645	0.611	0.740	0.771	0.779
Calcium	mg/L	143	153	181	133	133	118	136	146	134	119 D	165 D	145 D	137 J
Chloride	mg/L	384 DX	50.5	403 D	388	395 D	400 D	168 D	386	387 D	429	438	432	452
Fluoride	mg/L	0.857	0.352 JH	0.746 JH	0.891	1.14	1.08 JH	0.0960 U	0.864	0.791	0.820	0.822	0.832	1.01
Sulfate	mg/L	164 X	147	172	173	164	166	139 D	157	168	155	168	159	177
pH - Field Collected	SU	6.85	6.80	6.81	6.82	6.72	5.77	6.72	6.53	6.75	6.70	6.90	5.96	6.81
Total dissolved solids	mg/L	1430	1380	1290	1310	1500	1270	826	1470	1300	1190	1420	1370	1350
Appendix IV - Assessment	Monitoring													
Antimony	mg/L	0.00120 U	0.000240 U	0.000240 U	0.00120 U	0.00120 U	0.000240 U	0.000240 U	0.000240 U	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00123 U	0.000650 J	0.000520 J	0.00123 U	0.00123 U	0.000507 J	0.000582 J	0.000599 J	NR	NR	NR	NR	NR
Barium	mg/L	0.103	0.0876	0.0823	0.0758	0.0828	0.0780	0.0801	0.0816	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000654 U	0.000131 U	0.000134 J	0.000654 U	0.000654 U	0.000131 U	0.000131 U	0.000131 U	NR	NR	NR	NR	NR
Cadmium	mg/L	0.000734 U	0.000147 U	0.000147 U	0.000734 U	0.000734 U	0.000147 U	0.000147 U	0.000147 U	NR	NR	NR	NR	NR
Chromium	mg/L	0.00262 U	0.000625 J	0.000525 U	0.00262 U	0.00262 U	0.000525 U	0.000797 J	0.000903 J	NR	NR	NR	NR	NR
Cobalt	mg/L	0.00702 J	0.00516	0.00579	0.00750 J	0.00642 J	0.00562	0.00565	0.00565	NR	NR	NR	NR	NR
Fluoride	mg/L	0.857	0.352 JH	0.746 JH	0.891	1.14	1.08 JH	0.0960 U	0.864	NR	NR	NR	NR	NR
Lead	mg/L	0.000758 U	0.000152 U	0.000152 U	0.000758 U	0.000758 U	0.000152 U	0.000152 U	0.000152 U	NR	NR	NR	NR	NR
Lithium	mg/L	0.000476 U	0.000476 U	0.00238 U	0.0136 J	0.0425	0.0354	0.0495	0.0338	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 U	0.0000263 U	0.0000263 UX	0.0000263 U	0.0000263 UX	0.0000263 U	0.0000263 U	0.0000263 U	NR	NR	NR	NR	NR
Molybdenum	mg/L	0.00130 J	0.00123 J	0.00108 J	0.00128 U	0.00128 U	0.000804 J	0.000898 J	0.000837 J	NR	NR	NR	NR	NR
Selenium	mg/L	0.00227 U	0.000454 U	0.000454 U	0.00227 U	0.00227 U	0.000454 U	0.000454 U	0.000454 U	NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000332 U	0.000332 U	0.00166 U	0.00166 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR
Radium-226	pCi/L	0.694 ± 0.358	0.721 ± 0.320	0.745 ± 0.258	0.576 ± 0.261	0.305 ± 0.190	0.0212 ± 0.171	0.327 ± 0.233	0.588 ± 0.314	NR	NR	NR	NR	NR
Radium-228	pCi/L	3.76 ± 1.33	1.87 ± 1.01	-0.0356 ± 1.09	1.01 ± 1.02	0.591 ± 0.843	0.532 ± 0.795	0.234 ± 0.821	1.24 ± 0.848	NR	NR	NR	NR	NR

mg/L: Milligrams per Liter.

SU: Standard Units.

- --: Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- H: Bias in sample result likely to be high.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- L: Bias in sample result likely to be low.
- NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3 Groundwater Analytical Results Summary CPS Energy - Calaveras Power Station Bottom Ash Ponds

	Г						JK	S-56 Downgradien	nt					
	Sample Date	12/7/16	2/22/17	3/30/17	5/3/17	6/20/17	7/25/17	8/29/17	10/10/17	4/4/18	10/30/18	4/9/19	10/22/19	4/28/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020
Appendix III - Detection Mo	onitoring													
Boron	mg/L	3.97	4.13		4.60	3.98	3.60	3.60 X	3.48	3.95	3.95	3.85	4.47	3.55
Calcium	mg/L	137	143	127	124	136	116	137	146	126	121 D	150 D	131 D	103 J
Chloride	mg/L	131	95.7	96.3	95.6	114	126	146 D	150	121	108 JL	81.0	81.2	101
Fluoride	mg/L	0.344	0.354 JH	0.333	0.564	0.407 JH	0.401 JH	0.0960 U	0.448 JH	0.37 J	0.428 J	0.372 J	0.452 J	0.552
Sulfate	mg/L	193	190	188	183	186	194	201 D	200	193	192	193	194	138
pH - Field Collected	SU	6.73	6.63	6.56	6.71	6.56	5.63	6.57	6.38	6.64	6.55	6.76	5.84	6.72
Total dissolved solids	mg/L	1100	969	1020	997	1060	1060	986	1240	992	976	918	968	904
Appendix IV - Assessment	Monitoring													
Antimony	mg/L	0.00120 U	0.000240 U		0.00120 U	0.00120 U	0.000240 U	0.00104 J	0.000240 U	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00527 J	0.00425		0.00350 J	0.00435 J	0.00373	0.00517	0.00451	NR	NR	NR	NR	NR
Barium	mg/L	0.126	0.0974		0.0890	0.0921	0.0897	0.103	0.0909	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000654 U	0.000131 U		0.000654 U	0.000654 U	0.000131 U	0.000136 J	0.000131 U	NR	NR	NR	NR	NR
Cadmium	mg/L	0.000734 U	0.000147 U		0.000734 U	0.000734 U	0.000147 U	0.000147 U	0.000147 U	NR	NR	NR	NR	NR
Chromium	mg/L	0.00262 U	0.000654 J		0.00276 J	0.00262 U	0.000525 U	0.00498	0.00141 J	NR	NR	NR	NR	NR
Cobalt	mg/L	0.00560 J	0.00564		0.00641 J	0.00687 J	0.00668	0.00771	0.00746	NR	NR	NR	NR	NR
Fluoride	mg/L	0.344	0.354 JH	0.333	0.564	0.407 JH	0.401 JH	0.0960 U	0.448 JH	NR	NR	NR	NR	NR
Lead	mg/L	0.000758 U	0.000152 U		0.000758 U	0.000758 U	0.000152 U	0.000211 J	0.000152 U	NR	NR	NR	NR	NR
Lithium	mg/L	0.000476 U	0.000476 U	0.000476 U	0.000476 U	0.00156 J	0.000476 U	0.00598 J	0.000476 U	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 U	0.0000263 U	0.0000263 U	0.0000700 J	0.0000263 UX	0.0000263 U	0.0000263 UX	0.0000263 U	NR	NR	NR	NR	NR
Molybdenum	mg/L	0.00360 J	0.00190 J		0.00168 J	0.00152 J	0.00156 J	0.00160 J	0.00155 J	NR	NR	NR	NR	NR
Selenium	mg/L	0.00227 U	0.000454 U		0.00227 U	0.00227 U	0.000454 U	0.000454 U	0.000454 U	NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000332 U		0.00166 U	0.00166 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR
Radium-226	pCi/L	1.23 ± 0.430	0.254 ± 0.175	0.372 ± 0.215	0.138 ± 0.166	0.273 ± 0.253	0.177 ± 0.213	0.441 ± 0.225	0.397 ± 0.252	NR	NR	NR	NR	NR
Radium-228	pCi/L	0.949 ± 1.38	3.07 ± 1.28	1.09 ± 0.897	1.97 ± 1.35	1.27 ± 0.994	1.16 ± 0.862	1.45 ± 0.895	3.36 ± 1.42	NR	NR	NR	NR	NR

mg/L: Milligrams per Liter.

SU: Standard Units.

- -- : Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- H: Bias in sample result likely to be high.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- L: Bias in sample result likely to be low.
- NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3
Groundwater Analytical Results Summary
CPS Energy - Calaveras Power Station
Evaporation Pond

							JI	KS-47 Upgradien	t					
	Sample Date	12/8/16	2/28/17	3/29/17	5/3/17	6/21/17	7/26/17	8/30/17	10/11/17	4/5/18	10/30/18	4/10/19	10/23/19	4/29/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020
Appendix III - Detection I	Monitoring													
Boron	mg/L	0.824	0.838	0.696	0.817	0.804	0.828 JH	0.760	1.02	0.844	0.806	0.590	1.05	0.800
Calcium	mg/L	54.0	62.1	168	26.2	71.1	62.7 JH	66.7	36.1	53.5	83.2 D	128	36.5	43.1
Chloride	mg/L	107	150	232 D	193	168	148 JH	210 D	68.5	151	186	279	53.9 X	107
Fluoride	mg/L	0.0360 U	0.0360 U	0.315	0.382 JH	0.213 JH	0.360 U	0.0960 U	0.0360 U	0.0360 U	0.0998 J	0.0985 J	0.154 JH	0.163
Sulfate	mg/L	213 D	267 D	369 D	299	266 D	248 JH	284 D	171	236	262	347	210 X	257
pH - Field Collected	SU	5.82	5.83	5.75	6.00	5.75	5.85	5.90	5.93	5.91	5.72	5.92	4.58	5.87
Total dissolved solids	mg/L	811	922	1170	1060	979	806 JH	904	677	787	727	1240	665	772
Appendix IV - Assessme	nt Monitoring													
Antimony	mg/L	0.00120 U	0.000240 U	0.000294 J	0.00120 U	0.000275 J	0.000240 U	0.000240 U	0.000240 U	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00442 J	0.00130 J	0.00136 J	0.00123 U	0.00185 J	0.00105 J	0.00124 J	0.000246 U	NR	NR	NR	NR	NR
Barium	mg/L	0.0475	0.0132	0.0180	0.0118 J	0.0154	0.00981	0.0104	0.00785	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000813 J	0.000255 J	0.000131 U	0.000654 U	0.000352 J	0.000131 U	0.000172 J	0.000131 U	NR	NR	NR	NR	NR
Cadmium	mg/L	0.000734 U	0.000637 J	0.000977 J	0.000797 J	0.000735 J	0.000611 J	0.000814 J	0.000147 U	NR	NR	NR	NR	NR
Chromium	mg/L	0.234	0.00430	0.000988 J	0.00262 U	0.00262 J	0.000855 J	0.00130 J	0.000525 U	NR	NR	NR	NR	NR
Cobalt	mg/L	0.00915 J	0.00102 J	0.00153 J	0.00113 J	0.00227	0.000976 J	0.00107 J	0.0000699 U	NR	NR	NR	NR	NR
Fluoride	mg/L	0.0360 U	0.0360 U	0.315	0.382 JH	0.213 JH	0.360 U	0.0960 U	0.0360 U	NR	NR	NR	NR	NR
Lead	mg/L	0.00586 J	0.000950 J	0.000448 J	0.000758 U	0.00157 J	0.000202 J	0.000449 J	0.000152 U	NR	NR	NR	NR	NR
Lithium	mg/L	0.0615	0.0478	0.00238 U	0.0207	0.0720	0.0644	0.0799	0.0521	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000600 J	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	NR	NR	NR	NR	NR
Molybdenum	mg/L	0.0317	0.00126 J	0.00173 J	0.00128 J	0.000788 J	0.000581 J	0.000653 J	0.000255 U	NR	NR	NR	NR	NR
Selenium	mg/L	0.0493	0.0697	0.0518	0.0564	0.0613	0.0577	0.0525	0.0854	NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000332 U	0.000332 U	0.00166 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR
Radium-226	pCi/L	1.2 ± 0.342	0.578 ± 0.275	0.630 ± 0.237	0.538 ± 0.192	0.729 ± 0.278	0.304 ± 0.233	1.06 ± 0.361	0.246 ± 0.180	NR	NR	NR	NR	NR
Radium-228	pCi/L	1.66 ± 1.15	1.34 ± 1.05	1.27 ± 0.960 U	2.17 ± 1.01	0.664 ± 0.929	0.771 ± 1.48	1.65 ± 1.05	0.463 ± 0.886	NR	NR	NR	NR	NR

- (A) JKS-63 plugged and abandoned and replaced with JKS-63R on 5/2/19. Sample events 1 through 10 collected from JKS-63 and thereafter from JKS-63R.
- (1) Sample not collected due to the well going dry during sampling activities.
- (2) Sample not collected due to blockage in the well casing.
- mg/L: Milligrams per Liter.
- SU: Standard Units.
- pCi/L: Picocuries per Liter.
- --: Laboratory did not analyze sample for indicated constituent.
- B: Target analyte or common lab contaminant was identified in the method blank.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- H: Bias in sample result likely to be high.
 NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3
Groundwater Analytical Results Summary
CPS Energy - Calaveras Power Station
Evaporation Pond

							JKS-63 /	JKS-63R Upgrad	lient (A)					
	Sample Date	12/8/16	2/22/17	3/29/17	5/3/17	6/21/17	7/26/17	8/30/17	10/11/17	4/5/18	10/30/18	8/20/19	10/23/19	4/29/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020
Appendix III - Detection	Monitoring													
Boron	mg/L	0.800	0.866	NR	0.981	(1)	1.33 JH	1.23	1.06	1.13	(2)	2.03	1.03	0.950
Calcium	mg/L	783	914	713	1060	(1)	835	174	872	836	(2)	221	953 D	952
Chloride	mg/L	1230 D	1160 D	1220 D	1340	(1)	1960 JHD	1890 D	1420	1670	(2)	2360 D	2240	2530
Fluoride	mg/L	0.0573 J	0.320	0.297	0.364 JH	(1)	0.0971 JH	0.182 JH	0.0360 U	0.0360 U	(2)	0.206 J	0.352 JH	0.018 U
Sulfate	mg/L	0.0460 U	1860 D	1890 D	1860	(1)	1970 D	1920 D	1820	2110	(2)	1810 D	1750 D	1810
pH - Field Collected	SU	5.61	5.35	5.60	5.85	(1)	5.88	5.82	5.63	5.64	(2)		4.76	5.83
Total dissolved solids	mg/L	5750	4760	4870	5560	(1)	6410	5000	5080	5220	(2)	6660	5200	7240
Appendix IV - Assessme	ent Monitoring													
Antimony	mg/L	0.00120 U	0.000459 J	0.000695 J	0.00120 U	(1)	0.000240 U	0.000424 J	0.000240 U	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00332 J	0.00294	0.00128 J	0.00123 U	(1)	0.000893 J	0.000992 J	0.000246 U	NR	NR	NR	NR	NR
Barium	mg/L	0.0626	0.0540	0.0336	0.0316	(1)	0.0294	0.0258	0.0222	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000654 U	0.000930 J	0.000442 J	0.000654 U	(1)	0.000196 J	0.000223 J	0.000131 U	NR	NR	NR	NR	NR
Cadmium	mg/L	0.00339 J	0.00405	0.00394	0.00316 J	(1)	0.00282	0.00263	0.00285	NR	NR	NR	NR	NR
Chromium	mg/L	1.49	0.735	0.371	0.114	(1)	0.0742	0.0584	0.0130	NR	NR	NR	NR	NR
Cobalt	mg/L	0.0802	0.0762	0.0546	0.0331	(1)	0.0137	0.0119	0.0119	NR	NR	NR	NR	NR
Fluoride	mg/L	0.0573 J	0.320	0.297	0.364 JH	(1)	0.0971 JH	0.182 JH	0.0360 U	NR	NR	NR	NR	NR
Lead	mg/L	0.00441 J	0.00599	0.00108 J	0.000758 U	(1)	0.000238 J	0.000551 J	0.000152 U	NR	NR	NR	NR	NR
Lithium	mg/L	0.000476 U	0.116	0.00238 U	0.654	(1)	0.946	1.15	0.791	NR	NR	NR	NR	NR
Mercury	mg/L	0.000236	0.000237	0.000206	0.0000400 J	(1)	0.000260	0.000441	0.000376	NR	NR	NR	NR	NR
Molybdenum	mg/L	0.186	0.00789	0.00966	0.00419 J	(1)	0.00281	0.00180 J	0.000255 U	NR	NR	NR	NR	NR
Selenium	mg/L	0.0188	0.0210	0.0257	0.0188	(1)	0.0288	0.0318	0.0244	NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000332 U	0.000332 U	0.00166 U	(1)	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR
Radium-226	pCi/L	3.42 ± 0.573	2.76 ± 0.476	5.79 ± 0.790	4.57 ± 0.577	(1)	6.7 ± 0.744	7.36 ± 0.874	5.04 ± 0.711	NR	NR	NR	NR	NR
Radium-228	pCi/L	2.44 ± 1.44	4.13 ± 1.21	2.04 ± 1.61 U	3.41 ± 0.968	(1)	10.9 ± 2.31	1.79 ± 1.27	6.77 ± 1.48	NR	NR	NR	NR	NR

- (A) JKS-63 plugged and abandoned and replaced with JKS-63R on 5/2/19. Sample events 1 through 10 collected from JKS-63 and thereafter from JKS-63R.
- (1) Sample not collected due to the well going dry during sampling activities.
- (2) Sample not collected due to blockage in the well casing.
- mg/L: Milligrams per Liter.
- SU: Standard Units.
- pCi/L: Picocuries per Liter.
- --: Laboratory did not analyze sample for indicated constituent.
- B: Target analyte or common lab contaminant was identified in the method blank.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- H: Bias in sample result likely to be high.
 NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3
Groundwater Analytical Results Summary
CPS Energy - Calaveras Power Station
Evaporation Pond

							JI	KS-64 Upgradien	t					
	Sample Date	12/8/16	2/23/17	3/29/17	5/4/17	6/21/17	7/26/17	8/30/17	10/11/17	4/5/18	10/30/18	4/10/19	10/23/19	4/29/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020
Appendix III - Detection	Monitoring													
Boron	mg/L	0.839	0.837	1.14	0.962	0.816	0.904 JH	0.835	0.901	0.837	0.805	0.804	0.747	0.711
Calcium	mg/L	24.0	24.0	31.4	23.8	20.6	21.7 JH	21.6	25.2	23.6	24.4	23.0	24.4	20.3
Chloride	mg/L	12.7	12.4	11.8	11.0	11.4	11.5	11.5	9.63	14.2	15.5	16.6	17.7	18.2
Fluoride	mg/L	0.0360 U	0.294 JH	0.332	0.188	0.231 JH	0.157 JH	0.224 JH	0.0360 U	0.0360 U	0.106 J	0.121 J	0.176 JH	0.143
Sulfate	mg/L	171	182	184	174	172	170 JH	172	164	189	196	193	192 X	209
pH - Field Collected	SU	6.46	5.50	6.30	6.33	6.21	6.09	6.20	6.21	6.13	5.97	6.14	4.82	5.86
Total dissolved solids	mg/L	594	585	611	581	572	555 JH	463	576	549	525	551	588	569
Appendix IV - Assessme	nt Monitoring													
Antimony	mg/L	0.000240 U	0.000240 U	0.000240 U	0.00120 U	0.000240 U	0.000240 U	0.000240 U	0.000240 U	NR	NR	NR	NR	NR
Arsenic	mg/L	0.000911 J	0.000730 J	0.000556 J	0.00123 U	0.000476 J	0.000490 J	0.000519 J	0.000246 U	NR	NR	NR	NR	NR
Barium	mg/L	0.00768	0.00451	0.00392 J	0.00410 J	0.00320 J	0.00324 J	0.00275 BJ	0.000484 U	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000131 U	0.000131 U	0.000131 U	0.000654 U	0.000131 U	0.000131 U	0.000131 U	0.000131 U	NR	NR	NR	NR	NR
Cadmium	mg/L	0.000147 U	0.000147 U	0.000147 U	0.000734 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	NR	NR	NR	NR	NR
Chromium	mg/L	0.000525 U	0.000905 J	0.000525 U	0.00262 U	0.000867 J	0.000637 J	0.000961 J	0.000525 U	NR	NR	NR	NR	NR
Cobalt	mg/L	0.000998 J	0.000952 J	0.000851 J	0.000859 J	0.000745 J	0.000856 J	0.000889 J	0.0000699 U	NR	NR	NR	NR	NR
Fluoride	mg/L	0.0360 U	0.294 JH	0.332	0.188	0.231 JH	0.157 JH	0.224 JH	0.0360 U	NR	NR	NR	NR	NR
Lead	mg/L	0.000186 J	0.000152 U	0.000152 U	0.000758 U	0.000152 U	0.000152 U	0.000152 U	0.000152 U	NR	NR	NR	NR	NR
Lithium	mg/L	0.0173 J	0.0146 J	0.00238 U	0.0152 J	0.0173 J	0.0181 J	0.0252	0.0208	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 UX	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000540 J	0.0000263 U	NR	NR	NR	NR	NR
Molybdenum	mg/L	0.000398 J	0.000317 J	0.000255 U	0.00128 U	0.000265 J	0.000255 U	0.000273 J	0.000255 U	NR	NR	NR	NR	NR
Selenium	mg/L	0.000512 J	0.000550 J	0.000495 J	0.00227 U	0.000468 J	0.000468 J	0.000454 U	0.000454 U	NR	NR	NR	NR	NR
Thallium	mg/L	0.000332 U	0.000332 U	0.000332 U	0.00166 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR
Radium-226	pCi/L	0.981 ± 0.400	1.16 ± 0.408	0.530 ± 0.284	0.231 ± 0.174	0.258 ± 0.175	0.286 ± 0.247	1.05 ± 0.361	0.531 ± 0.276	NR	NR	NR	NR	NR
Radium-228	pCi/L	0.429 ± 1.56	2.07 ± 1.22	-0.102 ± 1.07 U	0.408 ± 0.764	0.699 ± 0.761	2.49 ± 1.54	0.26 ± 0.639	1 ± 0.834	NR	NR	NR	NR	NR

- (A) JKS-63 plugged and abandoned and replaced with JKS-63R on 5/2/19. Sample events 1 through 10 collected from JKS-63 and thereafter from JKS-63R.
- (1) Sample not collected due to the well going dry during sampling activities.
- (2) Sample not collected due to blockage in the well casing.
- mg/L: Milligrams per Liter.
- SU: Standard Units.
- pCi/L: Picocuries per Liter.
- --: Laboratory did not analyze sample for indicated constituent.
- B: Target analyte or common lab contaminant was identified in the method blank.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- H: Bias in sample result likely to be high.
 NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3
Groundwater Analytical Results Summary
CPS Energy - Calaveras Power Station
Evaporation Pond

							JK	S-36 Downgradie	nt					
	Sample Date	12/8/16	2/23/17	3/29/17	5/4/17	6/21/17	7/26/17	8/30/17	10/11/17	4/5/18	10/30/18	4/10/19	10/22/19	4/29/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020
Appendix III - Detection	Monitoring													
Boron	mg/L	0.308	0.671	0.748	0.731	0.581	0.625 JH	0.663	0.637	0.625	0.686	0.663	0.632	0.459
Calcium	mg/L	69.7	165	147	282	247	255 JHX	241	289	281	311 D	315 D	265 D	175
Chloride	mg/L	14.5	199 D	37.0	355	364 D	379 JHD	319 D	328	347 X	313	285	274	63.3
Fluoride	mg/L	0.0360 U	0.439 JH	0.330	1.53	1.26	1.37 JH	1.30	1.32	1.95 X	1.47	1.45	1.41	1.18
Sulfate	mg/L	49.2	409 D	271 D	726	731 D	775 JHD	707 D	741	816 X	946	697	756 D	189
pH - Field Collected	SU	6.71	4.96	6.98	4.04	3.72	3.80	5.20	3.24	3.48	3.61	3.71	3.66	3.42
Total dissolved solids	mg/L	368	1010	591	1610	1820	1700 JH	1220	1770	1650	1630	1520	1600	1790
Appendix IV - Assessme	ent Monitoring													
Antimony	mg/L	0.00120 U	0.000240 U	0.00123 J	0.00120 U	0.000240 U	0.00121 J	0.000240 U	0.000240 U	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00123 U	0.000588 J	0.00134 J	0.00324 J	0.00276	0.00369	0.00341	0.00372	NR	NR	NR	NR	NR
Barium	mg/L	0.0988	0.0967	0.139	0.0270	0.0187	0.0207	0.0372	0.0225	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000654 U	0.00198 J	0.000131 U	0.0259	0.0226	0.0261	0.0212	0.0259	NR	NR	NR	NR	NR
Cadmium	mg/L	0.00257 J	0.00510	0.000548 J	0.0118	0.0102	0.0117	0.0101	0.0113	NR	NR	NR	NR	NR
Chromium	mg/L	0.00262 U	0.00608	0.0409	0.0100 J	0.00968	0.0156	0.00792	0.0132	NR	NR	NR	NR	NR
Cobalt	mg/L	0.000579 J	0.0871	0.00751	0.220	0.186	0.216	0.195	0.215	NR	NR	NR	NR	NR
Fluoride	mg/L	0.0360 U	0.439 JH	0.330	1.53	1.26	1.37 JH	1.30	1.32	NR	NR	NR	NR	NR
Lead	mg/L	0.000758 U	0.000152 U	0.000152 U	0.000758 U	0.000164 J	0.000220 J	0.000261 J	0.000152 U	NR	NR	NR	NR	NR
Lithium	mg/L	0.0123 J	0.119	0.00238 U	0.326	0.340	0.371	0.372	0.379	NR	NR	NR	NR	NR
Mercury	mg/L	0.000834	0.000289	0.00143	0.00240	0.00244	0.00160	0.00113	0.00226	NR	NR	NR	NR	NR
Molybdenum	mg/L	0.00397 J	0.00261	0.0686	0.00183 J	0.000704 J	0.000791 J	0.00151 J	0.000255 U	NR	NR	NR	NR	NR
Selenium	mg/L	0.0334	0.0448	0.0313	0.0673	0.0616	0.0697	0.0633	0.0663	NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000487 J	0.000332 U	0.00166 U	0.000876 J	0.00114 J	0.000889 J	0.000332 U	NR	NR	NR	NR	NR
Radium-226	pCi/L	0.0888 ± 0.151	1.12 ± 0.342	0.453 ± 0.276	4.85 ± 0.656	4.02 ± 0.608	4.32 ± 0.667	6.28 ± 0.845	3.6 ± 0.600	NR	NR	NR	NR	NR
Radium-228	pCi/L	2.14 ± 1.02	2.17 ± 0.979	0.166 ± 0.861 U	4.28 ± 1.19	3.44 ± 1.04	3.95 ± 1.79	2.63 ± 0.928	3.3 ± 1.33	NR	NR	NR	NR	NR

- (A) JKS-63 plugged and abandoned and replaced with JKS-63R on 5/2/19. Sample events 1 through 10 collected from JKS-63 and thereafter from JKS-63R.
- (1) Sample not collected due to the well going dry during sampling activities.
- (2) Sample not collected due to blockage in the well casing.
- mg/L: Milligrams per Liter.
- SU: Standard Units.
- pCi/L: Picocuries per Liter.
- --: Laboratory did not analyze sample for indicated constituent.
- B: Target analyte or common lab contaminant was identified in the method blank.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- H: Bias in sample result likely to be high.
 NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3
Groundwater Analytical Results Summary
CPS Energy - Calaveras Power Station
Evaporation Pond

							JK	S-61 Downgradie	nt					
	Sample Date	12/7/16	2/23/17	3/29/17	5/3/17	6/21/17	7/26/17	8/30/17	10/11/17	4/5/18	10/31/18	4/10/19	10/22/19	4/29/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020
Appendix III - Detection	Monitoring													
Boron	mg/L	1.07	1.29	1.15	1.18	0.960	1.01 JH	0.994	0.997	1.09	3.25	2.72	2.90	1.82
Calcium	mg/L	134	95.9	155	113	115	107 JH	105	135	171	197 D	176	168 D	154
Chloride	mg/L	198	158	162	168	193	190 JH	218 D	210	285	213	253	248	312
Fluoride	mg/L	0.393	0.503	0.522	0.643 JH	0.459 JH	0.479 JH	0.0960 U	0.0360 U	0.406 J	0.430 J	0.403 J	0.480 J	0.494
Sulfate	mg/L	401 D	377 JD	382 D	388	408 D	390 JHD	385 D	401	562	548	619	548 D	604
pH - Field Collected	SU	6.72	6.51	6.48	6.68	6.53	6.55	7.40	6.27	6.42	6.38	6.52	5.61	6.27
Total dissolved solids	mg/L	1400	1180	1190	1260	1430	1290 JH	1170	1280	1620	514	1650	1790	1870
Appendix IV - Assessme	ent Monitoring													
Antimony	mg/L	0.00120 U	0.000240 U	0.000240 U	0.00120 U	0.000240 U	0.000240 U	0.000240 U	0.000240 U	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00123 U	0.000768 J	0.000709 J	0.00123 U	0.000563 J	0.000622 J	0.000569 J	0.000246 U	NR	NR	NR	NR	NR
Barium	mg/L	0.0364	0.0186	0.0173	0.0178 J	0.0148	0.0167	0.0153	0.0162	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000654 U	0.000131 U	0.000131 U	0.000654 U	0.000131 U	0.000131 U	0.000131 U	0.000131 U	NR	NR	NR	NR	NR
Cadmium	mg/L	0.000734 U	0.000147 U	0.000147 U	0.000734 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	NR	NR	NR	NR	NR
Chromium	mg/L	0.00262 U	0.000911 J	0.000525 U	0.00262 U	0.000525 U	0.000604 J	0.000808 J	0.000525 U	NR	NR	NR	NR	NR
Cobalt	mg/L	0.000719 J	0.000725 J	0.000769 J	0.000779 J	0.000805 J	0.000765 J	0.000855 J	0.0000699 U	NR	NR	NR	NR	NR
Fluoride	mg/L	0.393	0.503	0.522	0.643 JH	0.459 JH	0.479 JH	0.0960 U	0.0360 U	NR	NR	NR	NR	NR
Lead	mg/L	0.000758 U	0.000152 U	0.000152 U	0.000758 U	0.000152 U	0.000152 U	0.000152 U	0.000152 U	NR	NR	NR	NR	NR
Lithium	mg/L	0.000476 U	0.0158 J	0.00238 U	0.0120 J	0.0342	0.0336	0.0443	0.0335	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	NR	NR	NR	NR	NR
Molybdenum	mg/L	0.00165 J	0.00129 J	0.000984 J	0.00128 U	0.000776 J	0.000742 J	0.000712 J	0.000255 U	NR	NR	NR	NR	NR
Selenium	mg/L	0.00227 U	0.00123 J	0.00123 J	0.00227 U	0.00185 J	0.00154 J	0.00172 J	0.000454 U	NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000332 U	0.000332 U	0.00166 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR
Radium-226	pCi/L	1.15 ± 0.429	0.723 ± 0.306	0.256 ± 0.237 U	0.237 ± 0.193	0.398 ± 0.239	0.511 ± 0.223	0.821 ± 0.324	0.485 ± 0.212	NR	NR	NR	NR	NR
Radium-228	pCi/L	2.79 ± 1.44	0.358 ± 1.06	0.761 ± 0.688 U	-0.064 ± 0.607	2.03 ± 0.997	0.491 ± 0.813	0.247 ± 0.710	1.64 ± 1.08	NR	NR	NR	NR	NR

- (A) JKS-63 plugged and abandoned and replaced with JKS-63R on 5/2/19. Sample events 1 through 10 collected from JKS-63 and thereafter from JKS-63R.
- (1) Sample not collected due to the well going dry during sampling activities.
- (2) Sample not collected due to blockage in the well casing.
- mg/L: Milligrams per Liter.
- SU: Standard Units.
- pCi/L: Picocuries per Liter.
- --: Laboratory did not analyze sample for indicated constituent.
- B: Target analyte or common lab contaminant was identified in the method blank.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- H: Bias in sample result likely to be high.
 NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3
Groundwater Analytical Results Summary
CPS Energy - Calaveras Power Station
Evaporation Pond

							JK	S-62 Downgradie	ent					
	Sample Date	12/8/16	2/23/17	3/29/17	5/4/17	6/21/17	7/26/17	8/30/17	10/11/17	4/5/18	10/30/18	4/10/19	10/23/19	4/29/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020
Appendix III - Detection	Monitoring													
Boron	mg/L	0.549	0.481	0.597	0.601	0.501	0.485 JH	0.485	0.549	0.522	0.559	0.612	0.528	0.484
Calcium	mg/L	155	152	220	156	150	134 JH	150	158	160	161 D	205 D	151 D	122
Chloride	mg/L	257 D	279 DX	279 D	278	291 D	260 JHD	281 D	241	312	279	336	276	284
Fluoride	mg/L	0.246	0.362 JH	0.418	0.388	0.366 JH	0.342 JH	0.233 JH	0.0360 U	0.353 J	0.309 J	0.356 J	0.380 J	0.331
Sulfate	mg/L	190	187	193	188	184	181 JH	188 D	175	200	183	191	183	190
pH - Field Collected	SU	6.79	6.67	6.63	6.71	6.68	6.82	7.51	6.52	6.72	6.58	6.29	5.43	6.54
Total dissolved solids	mg/L	1120	1170	1140	1100	1080	976 JH	1080	1080	1110	956	1190	1160	1100
Appendix IV - Assessme	ent Monitoring													
Antimony	mg/L	0.000240 U	0.000240 U	0.000240 U	0.00120 U	0.000240 U	0.000240 U	0.000240 U	0.000240 U	NR	NR	NR	NR	NR
Arsenic	mg/L	0.000684 J	0.000293 J	0.000246 U	0.00123 U	0.000254 J	0.000246 U	0.000246 U	0.000246 U	NR	NR	NR	NR	NR
Barium	mg/L	0.0825	0.0786	0.0813	0.0747	0.0734	0.0737	0.0708	0.0793	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000131 U	0.000131 U	0.000131 U	0.000654 U	0.000131 U	0.000131 U	0.000131 U	0.000131 U	NR	NR	NR	NR	NR
Cadmium	mg/L	0.000147 U	0.000147 U	0.000147 U	0.000734 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	NR	NR	NR	NR	NR
Chromium	mg/L	0.00186 J	0.00109 J	0.000525 U	0.00262 U	0.000551 J	0.000691 J	0.00107 J	0.000525 U	NR	NR	NR	NR	NR
Cobalt	mg/L	0.00110 J	0.000198 J	0.000744 J	0.000350 U	0.000278 J	0.000211 J	0.0000699 U	0.0000699 U	NR	NR	NR	NR	NR
Fluoride	mg/L	0.246	0.362 JH	0.418	0.388	0.366 JH	0.342 JH	0.233 JH	0.0360 U	NR	NR	NR	NR	NR
Lead	mg/L	0.000588 J	0.000152 U	0.000152 U	0.000758 U	0.000154 J	0.000152 U	0.000152 U	0.000152 U	NR	NR	NR	NR	NR
Lithium	mg/L	0.000476 U	0.0129 J	0.00238 U	0.00134 J	0.0353	0.0305	0.0457	0.0263	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000540 J	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	NR	NR	NR	NR	NR
Molybdenum	mg/L	0.000414 J	0.000259 J	0.000255 U	0.00128 U	0.000255 U	0.000255 U	0.000255 U	0.000255 U	NR	NR	NR	NR	NR
Selenium	mg/L	0.222	0.192	0.196	0.195	0.185	0.181	0.191	0.208	NR	NR	NR	NR	NR
Thallium	mg/L	0.000332 U	0.000332 U	0.000332 U	0.00166 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR
Radium-226	pCi/L	0.485 ± 0.229	0.402 ± 0.220	0.665 ± 0.321	0.0997 ± 0.153	0.425 ± 0.233	0.399 ± 0.220	2.02 ± 0.489	0.669 ± 0.279	NR	NR	NR	NR	NR
Radium-228	pCi/L	2.15 ± 1.38	1.53 ± 1.28 U	0.305 ± 1.10 U	-0.138 ± 0.656	0.66 ± 0.760	1.07 ± 0.949	0.673 ± 0.821	0.371 ± 0.631	NR	NR	NR	NR	NR

- (A) JKS-63 plugged and abandoned and replaced with JKS-63R on 5/2/19. Sample events 1 through 10 collected from JKS-63 and thereafter from JKS-63R.
- (1) Sample not collected due to the well going dry during sampling activities.
- (2) Sample not collected due to blockage in the well casing.
- mg/L: Milligrams per Liter.
- SU: Standard Units.
- pCi/L: Picocuries per Liter.
- --: Laboratory did not analyze sample for indicated constituent.
- B: Target analyte or common lab contaminant was identified in the method blank.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- H: Bias in sample result likely to be high.
 NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3
Groundwater Analytical Results Summary
CPS Energy - Calaveras Power Station
Fly Ash Landfill

	Γ						J	KS-45 Upgradient						
	Sample Date	12/6/16	2/23/17	3/28/17	5/3/17	6/20/17	7/25/17	8/29/17	10/10/17	4/4/18	10/30/18	4/10/19	10/23/19	4/28/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020
Appendix III - Detection M	lonitoring													
Boron	mg/L	1.65	1.51	2.27	1.11	2.03	1.91	2.02	2.21	2.28	3.24	2.78	2.98	3.01
Calcium	mg/L	144	122	184	105	101	103	120	130	128	161 D	195	161 D	141 J
Chloride	mg/L	196	187	181 J	160	152	0.803	345 JHD	24.8	118	137	167	144	113
Fluoride	mg/L	0.0360 U	0.207	0.334	0.337 JH	0.174 J	0.274 JH	0.0960 U	0.131 JH	0.0360 U	0.0360 U	0.0621 UJ	0.101 J	0.100
Sulfate	mg/L	623 D	639 D	661	613 X	602 D	2.95 JH	770 JHD	120	662 D	707	874	698	619
pH - Field Collected	SU	5.41	5.17	3.98	5.62	5.13	5.66	5.82	5.60	5.59	5.70	5.03	5.59	5.85
Total dissolved solids	mg/L	1270	1300	1330	1350	1270	1250	1680 JH	1100	1190	741	1350	1320	1590
Appendix IV - Assessmen	t Monitoring													
Antimony	mg/L	0.000240 U	0.000310 J	0.000400 J	0.00120 U	0.00120 U	0.000240 U	0.000348 J	0.000490 J	NR	NR	NR	NR	NR
Arsenic	mg/L	0.000534 J	0.00216	0.00595	0.00123 U	0.00123 U	0.000346 J	0.00283	0.000618 J	NR	NR	NR	NR	NR
Barium	mg/L	0.0185	0.0436	0.103	0.0128 J	0.0176 J	0.0114	0.0480	0.0142	NR	NR	NR	NR	NR
Beryllium	mg/L	0.00261 U	0.000383 J	0.000921 J	0.000654 U	0.000654 U	0.000149 J	0.000408 J	0.000229 J	NR	NR	NR	NR	NR
Cadmium	mg/L	0.000147 U	0.000147 U	0.000189 J	0.000734 U	0.000734 U	0.000147 U	0.000147 U	0.000147 U	NR	NR	NR	NR	NR
Chromium	mg/L	0.00743	0.0152	0.0320	0.00403 J	0.00262 U	0.00313 J	0.0135	0.00272 J	NR	NR	NR	NR	NR
Cobalt	mg/L	0.00506	0.00465	0.00828	0.00346 J	0.00351 J	0.00277	0.00376	0.00358	NR	NR	NR	NR	NR
Fluoride	mg/L	0.0360 U	0.207	0.334	0.337 JH	0.174 J	0.274 JH	0.0960 U	0.131 JH	NR	NR	NR	NR	NR
Lead	mg/L	0.000571 J	0.00419	0.0117	0.000758 U	0.000758 U	0.000479 J	0.00482	0.000968 J	NR	NR	NR	NR	NR
Lithium	mg/L	0.0329	0.0601	0.00238 U	0.0600	0.0639	0.0694	0.0935	0.0781	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 U	0.0000320 JX	0.0000263 U	0.0000263 U	0.0000300 J	0.0000263 U	0.0000263 U	0.0000263 U	NR	NR	NR	NR	NR
Molybdenum	mg/L	0.00105 J	0.00245	0.00372	0.00128 U	0.00128 U	0.000255 U	0.00115 J	0.000271 J	NR	NR	NR	NR	NR
Selenium	mg/L	0.0147	0.0144	0.0174	0.0121	0.0123	0.00990	0.0136	0.0118	NR	NR	NR	NR	NR
Thallium	mg/L	0.000332 U	0.000332 U	0.000460 J	0.00166 U	0.00166 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR
Radium-226	pCi/L	4.78 ± 0.890	4.29 ± 0.612	7.63 ± 0.795	3.29 ± 0.485	4.24 ± 0.671	4.34 ± 0.607	3.65 ± 0.553	5.07 ± 0.718	NR	NR	NR	NR	NR
Radium-228	pCi/L	1.92 ± 1.19	4.59 ± 1.34	2.27 ± 1.19	1.42 ± 0.908	2.84 ± 1.15	1.83 ± 0.868	1.86 ± 0.827	1.66 ± 0.847	NR	NR	NR	NR	NR

mg/L: Milligrams per Liter.

SU: Standard Units.

- --: Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.

 F: Relative percent difference exceeded
- laboratory control limits.
- H: Bias in sample result likely to be high.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- K: Sample analyzed outside of recommended hold time.
- L: Bias in sample result likely to be low. NR: Analysis of this constituent not
- required for detection monitoring. U: Analyte not detected at
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3
Groundwater Analytical Results Summary
CPS Energy - Calaveras Power Station
Fly Ash Landfill

							J	KS-57 Upgradient	t					
	Sample Date	12/7/16	2/22/17	3/28/17	5/2/17	6/20/17	7/25/17	8/29/17	10/10/17	4/4/18	10/30/18	4/10/19	10/23/19	4/28/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020
Appendix III - Detection M	lonitoring													
Boron	mg/L	3.19	3.24	3.17	2.67	3.09	3.08	2.98	3.48	4.49	2.81	3.23	4.14	5.97
Calcium	mg/L	349	362	413		290	327	337	393	409	401 D	477 D	479 D	622 J
Chloride	mg/L	70.6	76.2	89.6	130	158	311 D	12.5 JH	185	534 D	3770	119	841	3460
Fluoride	mg/L	3.62	3.32	2.84	2.27	3.42	3.43	0.0960 U	3.28	4.29	2.31	3.03	2.72	4.17
Sulfate	mg/L	2780 D	1980 DX	2090	2470 D	3080	3410 D	450 JH	3610	4260 D	5000	3570	4240	6510
pH - Field Collected	SU	6.73	6.08	5.13	6.63	6.37	6.72	6.60	6.70	6.63	6.35	6.20	6.19	6.49
Total dissolved solids	mg/L	4770	3780	3320	4060	5800	5920	850 JH	5850	7390	9750	6000	6700	15100
Appendix IV - Assessmen	t Monitoring													
Antimony	mg/L	0.00120 U	0.000240 U	0.000240 U	0.000240 U	0.00120 U	0.000240 U	0.000240 U	0.000240 U	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00138 J	0.000630 J	0.000654 J	0.000561 J	0.00123 U	0.000480 J	0.000519 J	0.000486 J	NR	NR	NR	NR	NR
Barium	mg/L	0.0311	0.0211	0.0208	0.0174	0.0164 J	0.0149	0.0128	0.0145	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000654 U	0.000131 U	0.000161 J	0.000131 U	0.000654 U	0.000131 U	0.000131 U	0.000131 U	NR	NR	NR	NR	NR
Cadmium	mg/L	0.000734 U	0.000147 U	0.000147 U	0.000147 U	0.000734 U	0.000147 U	0.000147 U	0.000147 U	NR	NR	NR	NR	NR
Chromium	mg/L	0.00262 U	0.000687 J	0.000525 U	0.000525 U	0.00262 U	0.000739 J	0.000816 J	0.00104 J	NR	NR	NR	NR	NR
Cobalt	mg/L	0.000520 J	0.00232	0.000297 J	0.000449 J	0.000407 J	0.000748 J	0.000195 J	0.000322 J	NR	NR	NR	NR	NR
Fluoride	mg/L	3.62	3.32	2.84	2.27	3.42	3.43	0.0960 U	3.28	NR	NR	NR	NR	NR
Lead	mg/L	0.000758 U	0.000152 U	0.000152 U	0.000152 U	0.000758 U	0.000152 U	0.000256 J	0.000152 U	NR	NR	NR	NR	NR
Lithium	mg/L	0.545	0.287 X	0.00238 U		0.533	0.649	0.671	0.733	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 U	0.0000300 J	0.0000263 U	0.0000580 J	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	NR	NR	NR	NR	NR
Molybdenum	mg/L	0.00128 U	0.000385 J	0.000278 J	0.000255 U	0.00128 U	0.000329 J	0.000283 J	0.000255 U	NR	NR	NR	NR	NR
Selenium	mg/L	0.00237 J	0.000664 J	0.000594 J	0.000561 J	0.00227 U	0.000612 J	0.000858 J	0.000697 J	NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000332 U	0.000332 U	0.000332 U	0.00166 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR
Radium-226	pCi/L	0.592 ± 0.325	0.322 ± 0.157	0.519 ± 0.219	0.356 ± 0.176	0.273 ± 0.273	0.338 ± 0.221	0.255 ± 0.176	0.0986 ± 0.153	NR	NR	NR	NR	NR
Radium-228	pCi/L	1.15 ± 0.895	2.31 ± 1.03	0.794 ± 0.818	2.86 ± 1.27	0.903 ± 0.843	0.786 ± 0.900	1.9 ± 0.894	1.73 ± 1.00	NR	NR	NR	NR	NR

mg/L: Milligrams per Liter.

SU: Standard Units.

- --: Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.

 F: Relative percent difference exceeded
- laboratory control limits.
- H: Bias in sample result likely to be high.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- K: Sample analyzed outside of recommended hold time.
- L: Bias in sample result likely to be low. NR: Analysis of this constituent not
- required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3 Groundwater Analytical Results Summary CPS Energy - Calaveras Power Station Fly Ash Landfill

	Γ						JK	S-31 Downgradien	nt					
	Sample Date	12/8/16	2/21/17	3/29/17	5/2/17	6/20/17	7/25/17	8/29/17	10/10/17	4/4/18	10/30/18	4/10/19	10/22/19	4/28/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020
Appendix III - Detection N	lonitoring													
Boron	mg/L	0.446	0.580	0.642	0.499	0.573	0.510	0.494	0.553	0.485	0.514	0.557	0.483	0.429
Calcium	mg/L	188	384 X	317		216	171	230	228	187	208 D	295 D	200 D	171 J
Chloride	mg/L	223 D	477 D	303 D	317	285 D	0.280 UDXF	0.347 U	288	253 D	256	322	267	272
Fluoride	mg/L	0.801	0.186 J	0.548	0.865	0.661	0.979 JHXF	0.0960 U	0.735 JH	0.839	0.694	0.791 U	0.784	1.00
Sulfate	mg/L	697 D	1130 D	768 D	875	782 D	1.17 JHDXF	0.160 JH	803	771 D	774	852	819	877
pH - Field Collected	SU	3.94	4.04	6.34	4.29	3.84	5.14	3.99	3.98	3.74	3.07	3.56	2.62	3.70
Total dissolved solids	mg/L	1470	2290	2430	1850	1730	1500	25.0 U	1890	1420	1390	1660	1620	1890
Appendix IV - Assessmer	nt Monitoring													
Antimony	mg/L	0.00120 U	0.000240 U	0.000295 J	0.000301 J	0.00120 U	0.000527 J	0.000240 U	0.000559 J	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00151 J	0.0110	0.00834	0.00501	0.00363 J	0.00134 J	0.00556	0.00279	NR	NR	NR	NR	NR
Barium	mg/L	0.0167 J	0.0141	0.0198	0.0136	0.0127 J	0.0229	0.0129	0.0122	NR	NR	NR	NR	NR
Beryllium	mg/L	0.00793 J	0.00851	0.00885	0.00814	0.00865 J	0.00593	0.00827	0.00857	NR	NR	NR	NR	NR
Cadmium	mg/L	0.000734 U	0.000147 U	0.000147 U	0.000147 U	0.000734 U	0.000147 U	0.000147 U	0.000147 U	NR	NR	NR	NR	NR
Chromium	mg/L	0.0200 J	0.000663 J	0.000596 J	0.000525 U	0.00262 U	0.000890 J	0.000849 J	0.000760 J	NR	NR	NR	NR	NR
Cobalt	mg/L	0.000440 J	0.0399	0.0623	0.0227	0.0173	0.0113	0.0302	0.0192	NR	NR	NR	NR	NR
Fluoride	mg/L	0.801	0.186 J	0.548	0.865	0.661	0.979 JHXF	0.0960 U	0.735 JH	NR	NR	NR	NR	NR
Lead	mg/L	0.000758 U	0.000415 J	0.000223 J	0.000344 J	0.000758 U	0.000348 J	0.00233	0.000580 J	NR	NR	NR	NR	NR
Lithium	mg/L	0.533	0.510	0.00238 U		0.572	0.484	0.615	0.590	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 U	0.0000263 U	0.0000263 U	0.0000360 J	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	NR	NR	NR	NR	NR
Molybdenum	mg/L	0.00128 U	0.000255 U	0.000255 U	0.000255 U	0.00128 U	0.000255 U	0.000255 U	0.000255 U	NR	NR	NR	NR	NR
Selenium	mg/L	0.00227 U	0.00163 J	0.00175 J	0.00125 J	0.00227 U	0.00162 J	0.00177 J	0.00155 J	NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000332 U	0.000332 U	0.000332 U	0.00166 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR
Radium-226	pCi/L	2.46 ± 0.574	2.60 ± 0.473	1.44 ± 0.425	1.40 ± 0.338	1.40 ± 0.403	1.28 ± 0.341	1.36 ± 0.399	1.01 ± 0.323	NR	NR	NR	NR	NR
Radium-228	pCi/L	7.35 ± 1.59	8.16 ± 2.15	5.33 ± 1.47	5.85 ± 1.79	4.63 ± 1.23	4.44 ± 1.37	3.58 ± 1.22	4.96 ± 1.43	NR	NR	NR	NR	NR

mg/L: Milligrams per Liter. SU: Standard Units.

- -- : Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference. F: Relative percent difference exceeded
- laboratory control limits.
- H: Bias in sample result likely to be high.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- K: Sample analyzed outside of recommended hold time.
- L: Bias in sample result likely to be low. NR: Analysis of this constituent not
- required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3
Groundwater Analytical Results Summary
CPS Energy - Calaveras Power Station
Fly Ash Landfill

	Γ						JK	S-33 Downgradien	nt					
	Sample Date	12/7/16	2/22/17	3/28/17	5/2/17	6/20/17	7/26/17	8/29/17	10/10/17	4/5/18	10/30/18	4/10/19	10/22/19	4/28/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020
Appendix III - Detection M	lonitoring													
Boron	mg/L	0.940	1.02	1.05	0.987	1.09	1.01	1.03	1.11	0.990	0.791	1.13	1.18	1.18
Calcium	mg/L	564	600	553		563	558	567	531	552	385 D	631	553 D	573 J
Chloride	mg/L	735 D	679 D	731 D	690	692 D	693 D	125 JH	666	786	758	806	773 JLKD	756
Fluoride	mg/L	1.86	1.08	1.77	1.36	1.81	1.34	0.480 U	1.69	1.85	1.21	1.23	1.24 JLK	1.68
Sulfate	mg/L	1850 D	1670 D	1780 D	1710	1690 D	1710 D	3170 D	1640	1810	1740	1640	1690 JLKD	1620
pH - Field Collected	SU	6.51	5.90	4.91	6.52	6.15	5.71	6.49	6.49	6.33	6.26	5.98	5.18	6.30
Total dissolved solids	mg/L	4000	3990	4310	4410	3750	4070	3580	4320	3970	3320	2650 JLK	4040 JLK	4370
Appendix IV - Assessment	t Monitoring													
Antimony	mg/L	0.00120 U	0.000240 U	0.00120 U	0.000240 U	0.00120 U	0.000240 U	0.000240 U	0.000240 U	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00123 U	0.000246 U	0.00123 U	0.000257 J	0.00123 U	0.000279 J	0.000316 J	0.000246 U	NR	NR	NR	NR	NR
Barium	mg/L	0.0326	0.0318	0.0297	0.0268	0.0279	0.0274	0.0263	0.0264	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000654 U	0.000131 U	0.000709 J	0.000131 U	0.000654 U	0.000131 U	0.000131 U	0.000131 U	NR	NR	NR	NR	NR
Cadmium	mg/L	0.000734 U	0.000147 U	0.000734 U	0.000147 U	0.000734 U	0.000147 U	0.000147 U	0.000147 U	NR	NR	NR	NR	NR
Chromium	mg/L	0.00262 U	0.000611 J	0.00262 U	0.000525 U	0.00262 U	0.000525 U	0.00113 J	0.00108 J	NR	NR	NR	NR	NR
Cobalt	mg/L	0.000690 J	0.000433 J	0.000487 J	0.000435 J	0.000512 J	0.000731 J	0.000902 J	0.000554 J	NR	NR	NR	NR	NR
Fluoride	mg/L	1.86	1.08	1.77	1.36	1.81	1.34	0.480 U	1.69	NR	NR	NR	NR	NR
Lead	mg/L	0.000758 U	0.000152 U	0.000758 U	0.000152 U	0.000758 U	0.000152 U	0.000157 J	0.000152 U	NR	NR	NR	NR	NR
Lithium	mg/L	0.000476 U	0.000476 U	0.00238 U		0.194	0.181	0.255	0.176	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 U	0.0000263 U	0.0000263 U	0.0000720 J	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	NR	NR	NR	NR	NR
Molybdenum	mg/L	0.00128 U	0.000255 U	0.00128 U	0.000255 U	0.00128 U	0.000255 U	0.000255 U	0.000255 U	NR	NR	NR	NR	NR
Selenium	mg/L	0.0314	0.0356	0.0389	0.0368	0.0451	0.0495	0.0546	0.0342	NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000332 U	0.00166 U	0.000332 U	0.00166 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR
Radium-226	pCi/L	2.04 ± 0.439	1.14 ± 0.328	2.36 ± 0.522	1.81 ± 0.365	1.73 ± 0.428	1.55 ± 0.422	1.37 ± 0.394	2.23 ± 0.491	NR	NR	NR	NR	NR
Radium-228	pCi/L	2.95 ± 1.16	3.52 ± 1.07	4.69 ± 1.33	3.24 ± 1.26	1.73 ± 0.902	4.11 ± 1.19	1.98 ± 1.01	2.99 ± 1.26	NR	NR	NR	NR	NR

mg/L: Milligrams per Liter.

SU: Standard Units.

- --: Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.

 F: Relative percent difference exceeded
- laboratory control limits.
- H: Bias in sample result likely to be high.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- K: Sample analyzed outside of recommended hold time.
- L: Bias in sample result likely to be low. NR: Analysis of this constituent not
- required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3 Groundwater Analytical Results Summary CPS Energy - Calaveras Power Station Fly Ash Landfill

	Γ						JK	S-46 Downgradien	nt					
	Sample Date	12/6/16	2/22/17	3/28/17	5/3/17	6/20/17	7/25/17	8/29/17	10/10/17	4/4/18	10/30/18	4/10/19	10/23/19	4/28/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020
Appendix III - Detection N	lonitoring													
Boron	mg/L	0.902	0.837	0.645	0.799	0.920	0.801	0.788	1.01	0.828	0.702	0.997	1.01	0.864
Calcium	mg/L	120	132	145	115	126	117	137	145	140	126 D	212 D	172 D	143 J
Chloride	mg/L	11.6	11.8	12.2	10.5	12.6	11.8	327 JHD	11.7	11.6	11.6	13.2	13.0	17.9
Fluoride	mg/L	1.51	1.38	1.03	1.59	2.25	2.34	0.460 JH	1.83	2.16	1.68	2.52	2.22	1.61 J
Sulfate	mg/L	700 D	692 D	608 D	677	0.0460 U	780 D	288 JHD	800	864 D	855	1030	1020	1180
pH - Field Collected	SU	3.60	3.55	2.10	3.57	2.96	3.54	3.21	3.20	3.15	3.00	2.85	2.62	3.10
Total dissolved solids	mg/L	1160	1040	926	1030	1270	1180	1170 JH	1390	1300	1220	1550	1500	1970
Appendix IV - Assessmer	nt Monitoring		<u>.</u>									<u> </u>		
Antimony	mg/L	0.000240 U	0.000240 U	0.000240 U	0.00120 U	0.00120 U	0.000240 U	0.000240 U	0.000240 U	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00190 J	0.00227	0.00144 J	0.00196 J	0.00277 J	0.00253	0.00295	0.00290	NR	NR	NR	NR	NR
Barium	mg/L	0.0429	0.0356	0.0308	0.0307	0.0364	0.0317	0.0323	0.0331	NR	NR	NR	NR	NR
Beryllium	mg/L	0.00381 J	0.00362	0.00340	0.00399 J	0.00459 J	0.00415	0.00462	0.00479	NR	NR	NR	NR	NR
Cadmium	mg/L	0.00110 J	0.000988 J	0.00121 J	0.00120 J	0.00101 J	0.00133 J	0.00141 J	0.00136 J	NR	NR	NR	NR	NR
Chromium	mg/L	0.000942 J	0.00140 J	0.00104 J	0.00262 U	0.00262 U	0.00156 J	0.00191 J	0.00202 J	NR	NR	NR	NR	NR
Cobalt	mg/L	0.0303	0.0324	0.0329	0.0367	0.0387	0.0383	0.0412	0.0414	NR	NR	NR	NR	NR
Fluoride	mg/L	1.51	1.38	1.03	1.59	2.25	2.34	0.460 JH	1.83	NR	NR	NR	NR	NR
Lead	mg/L	0.0162	0.0134	0.0109	0.0144	0.0192	0.0201	0.0236	0.0257	NR	NR	NR	NR	NR
Lithium	mg/L	0.0646	0.000476 U	0.00238 U	0.0673	0.0749	0.0799	0.107	0.0863	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 U	0.0000263 U	NR	NR	NR	NR	NR						
Molybdenum	mg/L	0.000255 U	0.000255 U	0.000255 U	0.00128 U	0.00128 U	0.000255 U	0.000255 U	0.000255 U	NR	NR	NR	NR	NR
Selenium	mg/L	0.0255	0.0266	0.0205	0.0247	0.0296	0.0257	0.0298	0.0283	NR	NR	NR	NR	NR
Thallium	mg/L	0.00293	0.00292	0.00235	0.00263 J	0.00314 J	0.00300	0.00335	0.00345	NR	NR	NR	NR	NR
Radium-226	pCi/L	3.16 ± 0.701	1.69 ± 0.387	1.80 ± 0.448	1.2 0± 0.315	1.82 ± 0.420	1.40 ± 0.353	1.52 ± 0.375	1.99 ± 0.459	NR	NR	NR	NR	NR
Radium-228	pCi/L	4.98 ± 1.41	2.17 ± 1.48	2.96 ± 1.24	1.98 ± 0.957	4.39 ± 1.13	2.80 ± 1.05	2.28 ± 1.13	3.82 ± 1.15	NR	NR	NR	NR	NR

mg/L: Milligrams per Liter.

SU: Standard Units.

- -- : Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference. F: Relative percent difference exceeded
- laboratory control limits. H: Bias in sample result likely to be high.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- K: Sample analyzed outside of recommended hold time.
- L: Bias in sample result likely to be low. NR: Analysis of this constituent not
- required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3 Groundwater Analytical Results Summary CPS Energy - Calaveras Power Station Fly Ash Landfill

	Γ						JK	S-60 Downgradier	nt					
	Sample Date	12/7/16	2/22/17	3/28/17	5/2/17	6/20/17	7/25/17	8/29/17	10/10/17	4/4/18	10/30/18	4/10/19	10/23/19	4/28/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020
Appendix III - Detection M	lonitoring													
Boron	mg/L	0.655	0.504	0.449	0.456	0.442	0.394	0.436	0.479	0.399	0.334	0.405	0.377	0.325
Calcium	mg/L	433	375	290		379	336	350	383	363	382 D	501 D	524 D	530 J
Chloride	mg/L	411 D	311 D	311 D	285	300 D	319 D	287 JHD	352	366 D	202	149 X	183	168
Fluoride	mg/L	0.0360 U	0.319	0.324	0.421	0.306	0.338 JH	0.0960 U	0.284 JH	0.22 J	0.239 J	0.187 UJ	0.231 J	0.188
Sulfate	mg/L	1480 D	999 D	1010 D	976 X	1020 D	818 D	760 JHDX	759	801 D	906	968	1320	1280
pH - Field Collected	SU	5.82	5.38	4.21	5.75	6.07	6.44	5.93	5.97	6.09	6.42	5.93	6.23	6.61
Total dissolved solids	mg/L	2790	2340	2020	2110	2510	2120	1450 JH	2300	1860	1910	2010	2820	3180
Appendix IV - Assessmen	t Monitoring													
Antimony	mg/L	0.00120 U	0.000240 U	0.000240 U	0.000240 U	0.00120 U	0.000240 U	0.000240 U	0.000240 U	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00123 U	0.000861 J	0.000592 J	0.000366 J	0.00123 U	0.000367 J	0.000381 J	0.000266 J	NR	NR	NR	NR	NR
Barium	mg/L	0.0702	0.0491	0.0465	0.0450	0.0469	0.0454	0.0490	0.0503	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000654 U	0.000131 U	0.000131 U	0.000131 U	0.000654 U	0.000131 U	0.000131 U	0.000131 U	NR	NR	NR	NR	NR
Cadmium	mg/L	0.000774 J	0.000778 J	0.000786 J	0.000695 J	0.000734 U	0.000359 J	0.000608 J	0.000699 J	NR	NR	NR	NR	NR
Chromium	mg/L	0.00262 U	0.000743 J	0.000525 U	0.000525 U	0.00262 U	0.000690 J	0.00204 J	0.00100 J	NR	NR	NR	NR	NR
Cobalt	mg/L	0.115	0.0542	0.0423	0.0389	0.0210	0.00896	0.0166	0.0183	NR	NR	NR	NR	NR
Fluoride	mg/L	0.0360 U	0.319	0.324	0.421	0.306	0.338 JH	0.0960 U	0.284 JH	NR	NR	NR	NR	NR
Lead	mg/L	0.000758 U	0.000152 U	0.000152 U	0.000152 U	0.000758 U	0.000152 U	0.000152 U	0.000216 J	NR	NR	NR	NR	NR
Lithium	mg/L	0.000476 U	0.000476 U	0.00238 U		0.0305	0.0179 J	0.0635	0.0314	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 U	0.0000263 U	0.0000263 U	0.0000370 J	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	NR	NR	NR	NR	NR
Molybdenum	mg/L	0.00128 U	0.000726 J	0.000622 J	0.000715 J	0.00148 J	0.00162 J	0.00124 J	0.00103 J	NR	NR	NR	NR	NR
Selenium	mg/L	0.00227 U	0.00168 J	0.00132 J	0.00981	0.0390	0.0244	0.00761	0.00745	NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000425 J	0.000412 J	0.000403 J	0.00166 U	0.000332 U	0.000372 J	0.000387 J	NR	NR	NR	NR	NR
Radium-226	pCi/L	3.01 ± 0.578	2.29 ± 0.421	2.74 ± 0.572	1.71 ± 0.378	0.914 ± 0.341	1.57 ± 0.381	1.34 ± 0.378	4.61 ± 0.650	NR	NR	NR	NR	NR
Radium-228	pCi/L	2.57 ± 1.15	2.62 ± 1.04	0.838 ± 0.826	0.269 ± 0.713	2.24 ± 1.02	0.701 ± 0.850	1.72 ± 0.940	2.48 ± 1.60	NR	NR	NR	NR	NR

mg/L: Milligrams per Liter. SU: Standard Units.

- -- : Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- F: Relative percent difference exceeded laboratory control limits.
- H: Bias in sample result likely to be high.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- K: Sample analyzed outside of recommended hold time.
- L: Bias in sample result likely to be low. NR: Analysis of this constituent not
- required for detection monitoring. U: Analyte not detected at
- laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3
Groundwater Analytical Results Summary
CPS Energy - Calaveras Power Station
SRH Pond

							JK	S-49 Upgradien	t					
	Sample Date	12/7/16	2/22/17	3/28/17	5/3/17	6/20/17	7/25/17	8/29/17	10/10/17	4/4/18	10/30/18	4/9/19	10/22/19	4/28/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	April 2020
Appendix III - Detection M	lonitoring													
Boron	mg/L	3.24	3.28	3.28	3.03 X	3.04 J	2.76	2.85	2.87	2.71	2.70	2.05	2.58	2.47
Calcium	mg/L	130	146	173	113	127	120	145	147	135	117 D	154 D	127 D	114 J
Chloride	mg/L	295 D	383 D	372 D	326	414 D	448 D	459 D	424	446 D	408	449	429	452
Fluoride	mg/L	0.715	0.643 JH	0.665 JH	0.809	0.627 JH	0.617 JH	0.525	0.712	0.697	0.719	0.749	0.793	0.894
Sulfate	mg/L	211 D	232 D	234 D	194	218 D	227	265 D	219 X	237	237	240	205	217
pH - Field Collected	SU	7.19	7.12	7.12	7.02	7.06	6.16	7.05	6.89	7.12	7.12	7.31	6.43	7.15
Total dissolved solids	mg/L	1250	1240	1190	1100	1450	1440	1490	1730	1310	1210	1290	1380	1240
Appendix IV - Assessmen	nt Monitoring		·			·	·	·		·	·	•	•	
Antimony	mg/L	0.00120 U	0.000240 U	0.000240 U	0.00173 J	0.00120 U	0.000240 U	0.000240 U	0.000240 U	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00123 U	0.000676 J	0.000729 J	0.00123 U	0.00123 U	0.000544 J	0.000538 J	0.000478 J	NR	NR	NR	NR	NR
Barium	mg/L	0.0607	0.0575	0.0503	0.0554	0.0783	0.0721	0.0788	0.0735	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000654 U	0.000131 U	0.000131 U	0.000654 U	0.000654 U	0.000131 U	0.000131 U	0.000131 U	NR	NR	NR	NR	NR
Cadmium	mg/L	0.000734 U	0.000147 U	0.000147 U	0.000734 U	0.000734 U	0.000147 U	0.000147 U	0.000147 U	NR	NR	NR	NR	NR
Chromium	mg/L	0.00262 U	0.000859 J	0.000572 J	0.00262 U	0.00262 U	0.000963 J	0.000997 J	0.00113 J	NR	NR	NR	NR	NR
Cobalt	mg/L	0.00102 J	0.00109 J	0.00124 J	0.00155 J	0.00133 J	0.00153 J	0.00155 J	0.00146 J	NR	NR	NR	NR	NR
Fluoride	mg/L	0.715	0.643 JH	0.665 JH	0.809	0.627 JH	0.617 JH	0.525	0.712	NR	NR	NR	NR	NR
Lead	mg/L	0.000758 U	0.000152 U	0.000152 U	0.000758 U	0.000758 U	0.000155 J	0.000152 U	0.000152 U	NR	NR	NR	NR	NR
Lithium	mg/L	0.000476 U	0.000476 U	0.00238 U	0.0137 J	0.0341	0.0295	0.0427	0.0252	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 U	0.0000263 U	0.0000263 U	0.0000690 J	0.0000263 U	0.0000490 J	0.0000263 U	0.0000263 U	NR	NR	NR	NR	NR
Molybdenum	mg/L	0.00779 J	0.00846	0.00875	0.0106	0.00908 J	0.00938	0.0107	0.0111	NR	NR	NR	NR	NR
Selenium	mg/L	0.00992 J	0.00597	0.00479	0.00521 J	0.00370 J	0.00235	0.00188 J	0.00141 J	NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000332 U	0.000332 U	0.00166 U	0.00166 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR
Radium-226	pCi/L	0.198 ± 0.197	0.615 ± 0.272	0.747 ± 0.323	0.195 ± 0.167	0.294 ± 0.192	0.241 ± 0.193	0.159 ± 0.191	0.746 ± 0.274	NR	NR	NR	NR	NR
Radium-228	pCi/L	2.1 ± 0.907	-1.37 ± 1.37	0.854 ± 0.724	1.08 ± 1.72	2.23 ± 0.949	0.658 ± 0.636	0.812 ± 0.604	1.43 ± 0.898	NR	NR	NR	NR	NR

mg/L: Milligrams per Liter.

SU: Standard Units.

- --: Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- H: Bias in sample result likely to be high.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3
Groundwater Analytical Results Summary
CPS Energy - Calaveras Power Station
SRH Pond

							JK	S-51 Upgradien	t					
	Sample Date	12/8/16	2/22/17	3/28/17	5/3/17	6/21/17	7/25/17	8/29/17	10/10/17	4/4/18	10/30/18	4/9/19	10/22/19	4/28/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	April 2020
Appendix III - Detection M	lonitoring													
Boron	mg/L	0.512	0.517	0.473	0.565	0.512	0.525	0.453	0.509	0.465	0.347	0.489	0.648	0.627
Calcium	mg/L	267	292	322	266	261 X	232	236	256	246	149 D	328	336 D	334 J
Chloride	mg/L	403 D	331 D	414 D	447	424 D	455 D	384 D	375	395 D	301	559	574 D	555
Fluoride	mg/L	0.247	0.341 JH	0.415 JH	0.534	0.354	0.391	0.0960 U	0.407 JH	0.305 J	0.291 J	0.329 J	0.405 J	0.470
Sulfate	mg/L	293 D	330 D	348 D	359	342 D	330 D	314 D	302	354 D	260	428	405 D	439
pH - Field Collected	SU	6.59	6.51	6.48	6.56	6.40	5.48	6.38	6.20	6.44	6.70	6.66	5.73	6.43
Total dissolved solids	mg/L	1650	1650	1490	1980	1530	1580	1390	1650	1320	916	1890	2150	2010
Appendix IV - Assessmen	nt Monitoring	•	·	•	•	•	•	•	•	·	•	·		
Antimony	mg/L	0.00120 U	0.000240 U	0.000240 U	0.00120 U	0.000953 J	0.000240 U	0.000240 U	0.000240 U	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00123 U	0.000412 J	0.000390 J	0.00123 U	0.000392 J	0.000344 J	0.000395 J	0.000418 J	NR	NR	NR	NR	NR
Barium	mg/L	0.0655	0.0563	0.0517	0.0512	0.0534	0.0520	0.0520	0.0564	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000654 U	0.000131 U	0.000131 U	0.000654 U	0.000212 J	0.000131 U	0.000131 U	0.000131 U	NR	NR	NR	NR	NR
Cadmium	mg/L	0.000734 U	0.000147 U	0.000147 U	0.000734 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	NR	NR	NR	NR	NR
Chromium	mg/L	0.00262 U	0.000941 J	0.000525 U	0.00262 U	0.000657 J	0.000874 J	0.00113 J	0.00133 J	NR	NR	NR	NR	NR
Cobalt	mg/L	0.000350 U	0.0000770 J	0.0000920 J	0.000350 U	0.000124 J	0.0000940 J	0.0000800 J	0.000108 J	NR	NR	NR	NR	NR
Fluoride	mg/L	0.247	0.341 JH	0.415 JH	0.534	0.354	0.391	0.0960 U	0.407 JH	NR	NR	NR	NR	NR
Lead	mg/L	0.000758 U	0.000152 U	0.000152 U	0.000758 U	0.000152 U	0.000152 U	0.000152 U	0.000152 U	NR	NR	NR	NR	NR
Lithium	mg/L	0.000476 U	0.000476 U	0.00238 U	0.0322	0.0874	0.0790	0.0958 JX	0.0718	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 U	0.000199 J	0.0000263 U	0.0000263 U	NR	NR	NR	NR	NR				
Molybdenum	mg/L	0.00128 U	0.000255 U	0.000255 U	0.00128 U	0.000255 U	0.000255 U	0.000255 U	0.000255 U	NR	NR	NR	NR	NR
Selenium	mg/L	0.00227 U	0.000454 U	0.000454 U	0.00227 U	0.000454 U	0.000454 U	0.000454 U	0.000454 U	NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000332 U	0.000332 U	0.00166 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR
Radium-226	pCi/L	1.09 ± 0.376	0.104 ± 0.122	0.618 ± 0.247	0.197 ± 0.145	0.328 ± 0.195	0.0847 ± 0.186	4.83 ± 0.763	0.682 ± 0.309	NR	NR	NR	NR	NR
Radium-228	pCi/L	0.312 ± 0.688	1.09 ± 1.37	2.32 ± 1.45	-1.26 ± 1.37	-0.799 ± 0.928	1.57 ± 0.786	0.762 ± 0.706	0.963 ± 0.954	NR	NR	NR	NR	NR

mg/L: Milligrams per Liter.

SU: Standard Units.

- --: Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- H: Bias in sample result likely to be high.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3
Groundwater Analytical Results Summary
CPS Energy - Calaveras Power Station
SRH Pond

							JKS	-52 Downgradie	ent					
	Sample Date	12/7/16	2/21/17	3/28/17	5/2/17	6/21/17	7/25/17	8/29/17	10/10/17	4/4/18	10/30/18	4/9/19	10/22/19	4/28/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	April 2020
Appendix III - Detection N	lonitoring													
Boron	mg/L	1.66	2.11	1.63	1.51	1.33	1.43	1.46	1.71 X	1.95	1.54	1.46 X	1.65	2.05
Calcium	mg/L	169	181	189		145	140	162	168	175	153 D	195 DX	171 D	174 J
Chloride	mg/L	331 D	377 D	323 DX	320	326 D	343 D	417 D	355	360 D	326	336	320	433
Fluoride	mg/L	0.796	0.665	0.718 JH	0.915 JH	0.705	0.996 JH	0.0960 U	0.740	0.720	0.710	0.831	0.808	0.908
Sulfate	mg/L	277 D	318 D	299 DX	290	287 D	292 D	171 D	289	278 D	292	268	288 D	315
pH - Field Collected	SU	7.01	6.47	6.91	6.94	6.87	5.87	6.81	6.63	6.79	6.76	6.91	6.00	6.83
Total dissolved solids	mg/L	1290	1380	1100	1250	1280	1250	1250	1220	1240	1210	1170	1270	1470
Appendix IV - Assessmer	nt Monitoring		•			•	·	•		· ·		· ·	•	
Antimony	mg/L	0.00120 U	0.000240 U	0.000240 U	0.000240 U	0.000240 U	0.000240 U	0.000240 U	0.000240 U	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00123 U	0.000565 J	0.000398 J	0.000425 J	0.000427 J	0.000392 J	0.000412 J	0.000448 J	NR	NR	NR	NR	NR
Barium	mg/L	0.0646	0.0583	0.0519	0.0483	0.0527	0.0558	0.0565	0.0616	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000654 U	0.000131 U	0.000131 U	0.000131 U	0.000131 U	0.000131 U	0.000131 U	0.000153 J	NR	NR	NR	NR	NR
Cadmium	mg/L	0.000734 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	NR	NR	NR	NR	NR
Chromium	mg/L	0.00262 U	0.000525 U	0.000525 U	0.000525 U	0.000841 J	0.000860 J	0.00123 J	0.00108 J	NR	NR	NR	NR	NR
Cobalt	mg/L	0.00188 J	0.00233	0.00112 J	0.00119 J	0.00211	0.00183 J	0.00159 J	0.00189 J	NR	NR	NR	NR	NR
Fluoride	mg/L	0.796	0.665	0.718 JH	0.915 JH	0.705	0.996 JH	0.0960 U	0.740	NR	NR	NR	NR	NR
Lead	mg/L	0.000758 U	0.000152 U	0.000152 U	0.000152 U	0.000292 J	0.000152 U	0.000152 U	0.000163 J	NR	NR	NR	NR	NR
Lithium	mg/L	0.000476 U	0.0471	0.000476 U		0.0616	0.0605	0.0827	0.0588	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 U	0.000234	0.0000263 U	0.0000263 U	0.0000263 U	0.0000810 J	0.0000263 U	0.0000263 UX	NR	NR	NR	NR	NR
Molybdenum	mg/L	0.00128 U	0.00128 J	0.00115 J	0.00102 J	0.000911 J	0.000865 J	0.000843 J	0.000914 J	NR	NR	NR	NR	NR
Selenium	mg/L	0.00227 U	0.000454 U	0.000454 U	0.000454 U	0.000454 U	0.000454 U	0.000454 U	0.000454 U	NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR
Radium-226	pCi/L	1.71 ± 0.465	0.608 ± 0.289	0.296 ± 0.169	0 ± 0.150	0.435 ± 0.241	0.449 ± 0.196	0.194 ± 0.194	0.704 ± 0.319	NR	NR	NR	NR	NR
Radium-228	pCi/L	2.65 ± 1.12	0.744 ± 0.833	0.0645 ± 0.649	0.53 ± 1.10	0.928 ± 0.784	1.16 ± 0.867	0.716 ± 0.767	1.54 ± 1.22	NR	NR	NR	NR	NR

mg/L: Milligrams per Liter.

SU: Standard Units.

- --: Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- H: Bias in sample result likely to be high.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3
Groundwater Analytical Results Summary
CPS Energy - Calaveras Power Station
SRH Pond

							JKS	6-53 Downgradie	nt					
	Sample Date	12/8/16	2/23/17	3/29/17	5/2/17	6/21/17	7/26/17	8/30/17	10/11/17	4/4/18	10/30/18	4/9/19	10/22/19	4/28/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	April 2020
Appendix III - Detection M	lonitoring													
Boron	mg/L	1.50	1.38	1.55	1.54	1.47	1.45	1.36	1.45	1.60	1.61	1.42	1.36	1.43
Calcium	mg/L	134	105	156	NR	94.1	97.0	99.0	113	113	111 D	116	123 D	114 J
Chloride	mg/L	383 D	336 D	315 D	322	335 D	329 X	341	313	361	350	354	342	381
Fluoride	mg/L	0.230	0.377	0.408	0.547 JH	0.339	0.385 J	0.412	0.0360 U	0.392 J	0.265 J	0.270 J	0.352 J	0.428
Sulfate	mg/L	283 D	267 D	238 D	241	236 D	234 X	227	214	249	236	224	213	244
pH - Field Collected	SU	6.80	6.63	6.54	6.56	6.67	6.69	6.62	6.50	6.67	6.65	6.60	5.60	6.67
Total dissolved solids	mg/L	1390	1250	1160	1180	1150	1220	1150	1140	1160	1140	1150	1250	1160
Appendix IV - Assessmen	nt Monitoring	•		•		•	•	•	•			·	•	
Antimony	mg/L	0.00120 U	0.000240 U	0.000240 U	0.000240 U	0.000240 U	0.000240 U	0.000240 U	0.000240 U	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00123 U	0.000284 J	0.000266 J	0.000274 J	0.000276 J	0.000246 U	0.000246 U	0.000246 U	NR	NR	NR	NR	NR
Barium	mg/L	0.0692	0.0633	0.0633	0.0623	0.0597	0.0638	0.0541	0.0617	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000654 U	0.000131 U	0.000131 U	0.000131 U	0.000131 U	0.000131 U	0.000131 U	0.000131 U	NR	NR	NR	NR	NR
Cadmium	mg/L	0.000734 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	NR	NR	NR	NR	NR
Chromium	mg/L	0.00262 U	0.000701 J	0.000525 U	0.000525 U	0.000525 U	0.000557 J	0.000906 J	0.000525 U	NR	NR	NR	NR	NR
Cobalt	mg/L	0.000356 J	0.000140 J	0.000135 J	0.000165 J	0.000137 J	0.000150 J	0.000163 J	0.0000699 U	NR	NR	NR	NR	NR
Fluoride	mg/L	0.230	0.377	0.408	0.547 JH	0.339	0.385 J	0.412	0.0360 U	NR	NR	NR	NR	NR
Lead	mg/L	0.000758 U	0.000152 U	0.000152 U	0.000152 U	0.000152 U	0.000152 U	0.000152 U	0.000152 U	NR	NR	NR	NR	NR
Lithium	mg/L	0.0279	0.0816	0.000476 U	NR	0.0931	0.104	0.125	0.109	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 U	0.0000780 J	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000470 JX	0.0000263 U	NR	NR	NR	NR	NR
Molybdenum	mg/L	0.00128 U	0.000290 J	0.000255 U	0.000255 U	0.000255 U	0.000255 U	0.000255 U	0.000255 U	NR	NR	NR	NR	NR
Selenium	mg/L	0.00227 U	0.000454 U	0.000454 U	0.000454 U	0.000454 U	0.000454 U	0.000454 U	0.000454 U	NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR
Radium-226	pCi/L	0.306 ± 0.261	0.909 ± 0.363	0.117 ± 0.211 U	0.519 ± 0.221	0.558 ± 0.232	0.385 ± 0.244	2.76 ± 0.582	0.451 ± 0.270	NR	NR	NR	NR	NR
Radium-228	pCi/L	1.09 ± 1.24	2.33 ± 1.13	1.81 ± 1.61	0.906 ± 1.02	-0.0622 ± 0.583	1.9 ± 1.24	1.44 ± 0.713	0.919 ± 0.853	NR	NR	NR	NR	NR

mg/L: Milligrams per Liter.

SU: Standard Units.

- -- : Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- H: Bias in sample result likely to be high.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

TABLE 3
Groundwater Analytical Results Summary
CPS Energy - Calaveras Power Station
SRH Pond

	Γ						JKS	-54 Downgradien	nt					
	Sample Date	12/8/16	2/23/17	3/28/17	5/2/17	6/21/17	7/26/17	8/30/17	10/11/17	4/5/18	10/30/18	4/9/19	10/22/19	4/28/20
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	April 2020
Appendix III - Detection M	lonitoring													
Boron	mg/L	1.24	1.16	1.35	1.26	1.14	1.26	1.16	1.28	1.26	1.30	1.38	1.50	1.23
Calcium	mg/L	114	106	160		103	102	95.8	113	111	98.2 D	117	117 D	118 J
Chloride	mg/L	345 D	350 D	353 D	344	355 D	354 D	339 D	328	382	356	385	368	380
Fluoride	mg/L	0.718	0.731	0.655 JH	0.850 JH	0.623	0.728	0.0960 U	0.661	0.742	0.643	0.711	0.773	0.861
Sulfate	mg/L	308 D	312 D	315 D	312	304 D	305 D	298 D	287	309	283	309	341 D	443
pH - Field Collected	SU	6.98	6.78	6.92	6.89	6.88	6.91	6.79	6.69	6.86	6.85	6.75	5.60	6.76
Total dissolved solids	mg/L	1370	1430	1310	1310	1410	1320	1360	1500	1230	1240	1470	1470	1570
Appendix IV - Assessmen	nt Monitoring	•		•	•	•	•	•	·	·				
Antimony	mg/L	0.00120 U	0.000240 U	0.000240 U	NR	NR	NR	NR	NR					
Arsenic	mg/L	0.00123 U	0.000369 J	0.000898 J	0.000351 J	0.000354 J	0.000484 J	0.000324 J	0.000246 U	NR	NR	NR	NR	NR
Barium	mg/L	0.0631	0.0564	0.0611	0.0537	0.0543	0.0593	0.0471	0.0558	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000654 U	0.000131 U	0.000131 U	0.000131 U	0.000162 J	0.000131 U	0.000131 U	0.000131 U	NR	NR	NR	NR	NR
Cadmium	mg/L	0.000734 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	NR	NR	NR	NR	NR
Chromium	mg/L	0.00262 U	0.000657 J	0.00186 J	0.000525 U	0.000525 U	0.000693 J	0.000765 J	0.000525 U	NR	NR	NR	NR	NR
Cobalt	mg/L	0.000420 J	0.000212 J	0.00199 J	0.000253 J	0.000260 J	0.000532 J	0.000334 J	0.0000699 U	NR	NR	NR	NR	NR
Fluoride	mg/L	0.718	0.731	0.655 JH	0.850 JH	0.623	0.728	0.0960 U	0.661	0.742	0.643	0.711	0.773	0.861
Lead	mg/L	0.000758 U	0.000152 U	0.000862 J	0.000152 U	0.000152 U	0.000241 J	0.000152 U	0.000152 U	NR	NR	NR	NR	NR
Lithium	mg/L	0.000476 U	0.0452	0.00238 U		0.0595	0.0599	0.0712	0.0608	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 U	0.0000620 J	0.0000263 U	0.0000263 U	NR	NR	NR	NR	NR				
Molybdenum	mg/L	0.00128 U	0.000447 J	0.000367 J	0.000377 J	0.000342 J	0.000352 J	0.000260 J	0.000255 U	NR	NR	NR	NR	NR
Selenium	mg/L	0.00227 U	0.000454 U	0.000454 U	NR	NR	NR	NR	NR					
Thallium	mg/L	0.00166 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR					
Radium-226	pCi/L	0.88 ± 0.339	0.878 ± 0.358	0.546 ± 0.213	0.217 ± 0.217	0.433 ± 0.249	0.313 ± 0.254	0.926 ± 0.324	0.42 ± 0.205	NR	NR	NR	NR	NR
Radium-228	pCi/L	1.12 ± 1.11	1.94 ± 1.01	0.429 ± 0.781	0.574 ± 1.41	0.451 ± 0.660	0.766 ± 1.29	1.48 ± 0.968	1.17 ± 0.827	NR	NR	NR	NR	NR

mg/L: Milligrams per Liter.

SU: Standard Units.

- --: Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- H: Bias in sample result likely to be high.
- J: Analyte detected above method (sample) detection limit but below method quantitation limit.
- NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
- X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

APPENDIX F	SITE HYDROGEOLOGY AND CROSS-SECTIONS	

2.1 SITE DESCRIPTION

CPS Energy owns and operates the Calaveras Power Station located southeast of San Antonio in Bexar County, Texas. Within this power station, there are two coal-fired plants (J.T. Deely Power Plant and J.K. Spruce Power Plant) that generate CCR that are subject to the CCR Rule. A General Site Location Map is provided as **Figure 1**.

CPS Energy has identified five onsite CCR Units:

- 1. Fly Ash Landfill (FAL);
- 2. Evaporation Pond (EP);
- 3. Sludge Recycle Holding (SRH) Pond;
- 4. North Bottom Ash Pond (BAP); and
- 5. South BAP.

For the purposes of this document, the FAL and EP are termed the Northern CCR Units and the SRH Pond and BAPs are termed the Southern CCR Units. The CCR Unit locations are shown in **Figure 2**.

2.2 SITE-WIDE GEOLOGY

According to the Bureau of Economic Geology (BEG) *Geologic Atlas of Texas San Antonio Sheet*, the geology in the area of Calaveras Power Station consists of the Carizzo Sand and the Wilcox Group. According to the United States Geological Survey (USGS), the Carizzo Sand consists of medium- to coarse-grained sandstone, with finer grained material towards the top of the formation and the Wilcox Group consists mostly of mudstone, with various amounts of sandstone, lignite, and ironstone concretions. Information presented in Section 2.2 and the following subsections was obtained from the *Groundwater Monitoring System* report (ERM, October 2017).

2.2.1 Northern CCR Units

The stratigraphic sequence is generally characterized by approximately 8 feet to 32 feet of unconsolidated material (sands, silts, and low to medium plasticity clays), underlain by a clayey/silty to well-sorted sand (groundwater-bearing unit) approximately 5 to over 25 feet thick, underlain by grey to brown, high plasticity clay (lower confining unit). The ground water bearing unit is at its greatest observed thickness near the southwest corner of the EP, and thins towards the northwest (northwest of the FAL). The lower confining unit, generally observed at a depth between approximately 471 feet to 478 feet above mean sea level (msl) was not observed at monitor wells JKS-47 and JKS-60 (drilled to depths of 462 feet and 466 feet above msl, respectively). This possibly suggests the presence of erosional channels or gradational changes in lithology between JKS-45 and JKS-47, and JKS-46 and JKS-60. Interbedded sands and clays were observed within both the unconsolidated material and ground water

bearing unit in monitor wells JKS-57, JKS-58, and JKS-61 through JKS-64. A high plasticity clay interval was observed above the groundwater-bearing unit at monitor well JKS-45, but appears to be discontinuous as it was not encountered during the installation of any other monitor wells in the vicinity of the Northern CCR Units. A CCR Well Network Location Map is provided as **Figure 3**.

Visual classifications of the geologic materials described above are consistent with results from the soil materials testing analysis conducted for samples collected at JKS-45, JKS-58, JKS-62, and JKS-64. The laboratory Unified Soil Classification System (USCS) results classify the high plasticity clay unit (above the groundwater-bearing unit) and the lower confining unit as fat clay (CH). Sandy lean clay (CL) and clayey sand (SC) USCS results from JKS-58 and JKS-62, respectively, suggest that the contact between the groundwater bearing unit and lower confining unit is gradational in some areas. The laboratory USCS results classify the groundwater-bearing unit from a silty sand (SM) at JKS-45 to a clayey sand (SC) at JKS-64. Hydraulic conductivities from cohesive samples collected from the lower confining unit were reported on the order of 10^{-7} to 10^{-8} centimeters per second (cm/sec), which is within the range of values for clay.

2.2.2 Southern CCR Units

The stratigraphic sequence is generally characterized by approximately 6 feet to 18 feet of unconsolidated material (sands, silts, and low to medium plasticity clays), underlain by clayey/silty sand to moderately-sorted sand (groundwaterbearing unit) approximately 9.5 to 21.5 feet thick, underlain by bedrock (sandstone). Discontinuous silts and interbedded clay material were observed within the groundwater-bearing unit in monitor wells JKS-48, JKS-49, and JKS-51 through JKS-55. A CCR Well Network Location Map is provided as **Figure 3**.

Visual classifications of the geologic materials described above are consistent with results from the soil materials testing analysis conducted for samples collected at JKS-48, JKS-53, and JKS-54. The laboratory USCS results classify the groundwater-bearing unit from a silty clayey sand (SC-SM) at JKS-54 to a clayey sand (SC) at JKS-48 and JKS-53. Hydraulic conductivities from cohesive samples collected from the lower confining unit were reported on the order of 10-6 to 10-8 (cm/sec).

2.3 SITE-WIDE HYDROGEOLOGY

Based on water level measurements and stratigraphic information collected during the advancement of the soil borings, ERM has provided an interpretation of the confining nature of the underlying stratigraphy. Information presented in the following subsections was obtained from the *Groundwater Monitoring System* report (ERM, October 2017).

2.3.1 Northern CCR Units

Groundwater in the vicinity of the Northern CCR Units appears to flow towards Lake Calaveras (southeast to east).

The groundwater-bearing unit in the vicinity of the Northern CCR Units appears to exhibit unconfined conditions based on the potentiometric surface of groundwater in relation to the first encountered water during drilling and the lack of continuous confining units (i.e., clay, sandy clay, or silty clay). The potentiometric surface is within approximately three feet of the first water encountered during drilling, and no continuous confining units are observed. The minimal change in elevation and the stratigraphic information indicates that a significant, laterally continuous confining layer is not present above the groundwater-bearing unit in the northern area. However, a laterally continuous lower confining unit was observed in multiple borings below the groundwater bearing unit.

2.3.2 Southern CCR Units

Groundwater in the vicinity of the Southern CCR Units appears to flow radially toward the lake and adjacent channel and away from a groundwater high represented by the water level elevation measured in JKS-49.

The groundwater-bearing unit in the vicinity of the Southern CCR Units appears to exhibit semi-confined conditions with confining units (i.e., clay, sandy clay, or silty clay) present in all the wells except JKS-49 and JKS-56. The potentiometric surface is within approximately 4 feet to 11 feet of where water was first encountered during drilling for all wells except JKS-56, indicative of groundwater under hydraulic head pressure with semi-confined conditions. JKS-56 appears to demonstrate unconfined conditions, due to the approximately 0.5 foot difference between the first encountered water during drilling and the potentiometric surface. There is a bedrock unit underlying the groundwater-bearing unit in the southern area.

3.1 PLACEMENT ABOVE THE UPPERMOST AQUIFER

The CCR Rule defines an aquifer as "a geologic formation, group of formations, or portion of a formation capable of yielding usable quantities of groundwater to wells or springs". The CCR Rule also defines uppermost aquifer as "the geologic formation nearest the natural ground surface that is an aquifer, as well as lower aquifers that are hydraulically interconnected with this aquifer within the facility's property boundary. Upper limit is measured at a point nearest to the natural ground surface to which the aquifer rises during the wet season".

ERM obtained site-specific information from engineering assessments and site investigations to evaluate whether the bases of the CCR Units are located more than 1.52 meters (5 feet) above the upper limit of the uppermost aquifer. Information reviewed included:

- CCR Units 2017 Annual Inspection and Fugitive Dust Control Report, Calaveras Power Station (ERM, January 2018); and
- Groundwater Monitoring System, CPS Energy Calaveras Power Station (ERM, October 2017)

The results of this evaluation are presented below for the individual CCR Units at the Calaveras Power Station.

3.1.1 Fly Ash Landfill (FAL)

Based on the review of the *CCR Units – 2017 Annual Inspection and Fugitive Dust Control Report* and as-built drawings, the elevation of the base of the FAL ranges from 514 to 503 feet above msl. The first groundwater beneath the FAL was encountered during well drilling at approximately 483 feet above msl, and static water levels range from 478 to 489 feet above msl based on current and historical water level data. A stratigraphic cross section (Section A-A') depicting the pertinent elevations is provided as **Figure 4**. Based on geotechnical analysis, the unit that overlies the first groundwater consists of fat clay, which typically has a hydraulic conductivity in the 10-8 cm/sec range signifying a very low permeability unit. Based on the above information, the base of the FAL is greater than 5 feet above the uppermost aquifer and unlikely to be in intermittent, recurring, or sustained hydraulic connection with the uppermost aquifer.

3.1.2 Evaporation Pond (EP)

Based on the review of the *CCR Units – 2017 Annual Inspection and Fugitive Dust Control Report* and as-built drawings, the elevation of the base of the EP ranges from 497 to 500 feet above msl. The first groundwater beneath the EP was encountered during well drilling at approximately 486 feet above msl, and static water levels range from 479 to 484 feet above msl based on current and historical water level data. A stratigraphic cross section (Section C-C') depicting the pertinent elevations is provided as **Figure 5**. Based on geotechnical analysis, the unit that overlies the first groundwater consists of interbedded sandy clay, which typically has a hydraulic conductivity in the 10-7 to 10-8 cm/sec range signifying a very low permeability unit. Based on the above information, the base of the EP is greater than 5 feet above the uppermost aquifer and unlikely to be in intermittent, recurring, or sustained hydraulic connection with the uppermost aquifer.

3.1.3 Sludge Recycle Holding (SRH) Pond

Based on the review of the *CCR Units – 2017 Annual Inspection and Fugitive Dust Control Report* and as-built drawings, the elevation of the base of the SRH Pond is 492 feet above msl. Although groundwater is under artesian conditions and rises to an elevation between 485 and 487 feet above msl based on available water level data, the first groundwater beneath the SRH Pond was encountered during well drilling at approximately 476 feet above msl. A stratigraphic cross section (Section D-D') depicting the pertinent elevations is provided as **Figure 6**. Based on geotechnical analysis, the unit that overlies the first groundwater consists of clayey sand, which typically has a hydraulic conductivity in the 10-6 to 10-8 cm/sec range signifying a low permeability unit. Based on the above information, the base of the SRH Pond is greater than 5 feet above the uppermost aquifer and unlikely to be in intermittent, recurring, or sustained hydraulic connection with the uppermost aquifer. Note that the first groundwater encountered in JKS-51 is perched water and not in hydraulic connection with the deeper, laterally continuous aquifer.

3.1.4 North Bottom Ash Pond (BAP)

Based on the review of the *CCR Units – 2017 Annual Inspection and Fugitive Dust Control Report* and as-built drawings, the elevation of the base of the BAPs ranges from 488 to 489 feet above msl. Although groundwater is under artesian conditions and rises to an elevation between 485 and 486 feet above msl based on available water level data, the first groundwater beneath the North BAP was encountered during well drilling ranging from 480 feet above msl in the south and 483.5 feet above msl in the north. A stratigraphic cross section (Section F-F') depicting the pertinent elevations is provided as **Figure 7**. Based on geotechnical analysis, the unit that overlies the first groundwater consists of clayey sand, which typically has a hydraulic conductivity in the 10-6 to 10-8 cm/sec range signifying a low permeability unit. Based on the above information, although portions of the North BAP are unlikely to be in intermittent, recurring, or sustained hydraulic connection with the uppermost aquifer, the base of the

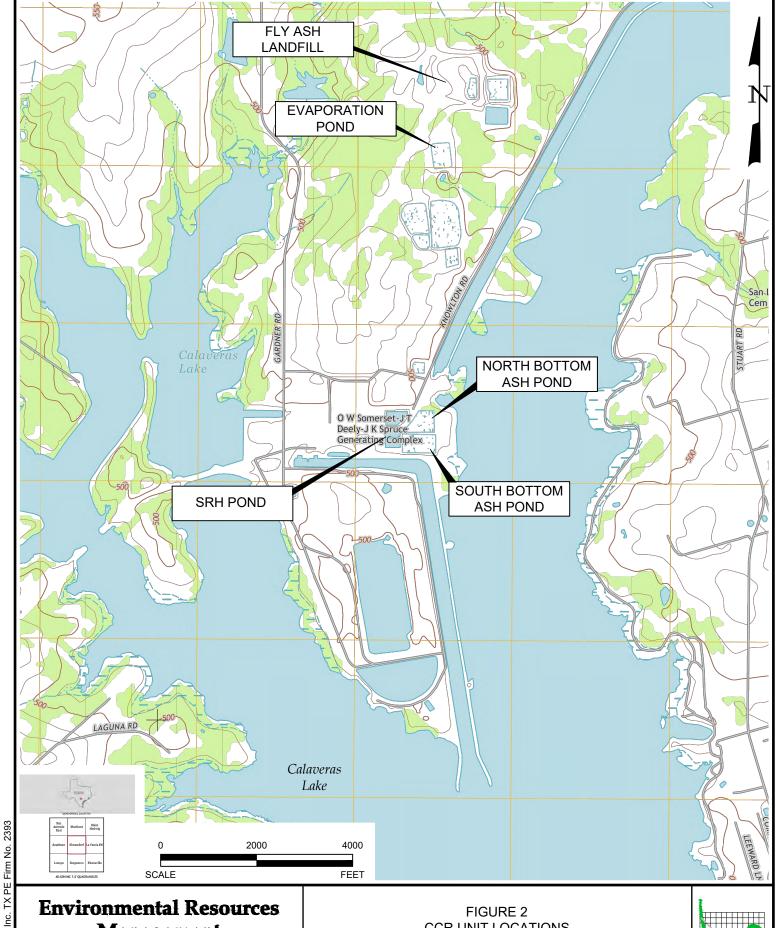
northern portion of the North BAP is less than 5 feet above the uppermost aquifer.

3.1.5 South Bottom Ash Pond (BAP)

Based on the review of the *CCR Units – 2017 Annual Inspection and Fugitive Dust Control Report* and as-built drawings, the elevation of the base of the BAPs ranges from 488 to 489 feet above msl. Stratigraphic cross sections (Section D-D' and Section F-F') depicting the pertinent elevations are provided as **Figure 6** and **Figure 7**, respectively. Although groundwater is under artesian conditions and rises to an elevation between 485 and 486 feet above msl based on available water level data, the first groundwater beneath the South BAP was encountered during well drilling at approximately 476 feet above msl. Based on geotechnical analysis, the unit that overlies the first groundwater consists of clayey sand, which typically has a hydraulic conductivity in the 10-6 to 10-8 cm/sec range signifying a low permeability unit. Based on the above information, the base of the South BAP is greater than 5 feet above the uppermost aquifer and unlikely to be in intermittent, recurring, or sustained hydraulic connection with the uppermost aquifer.

Environmental Resources Management

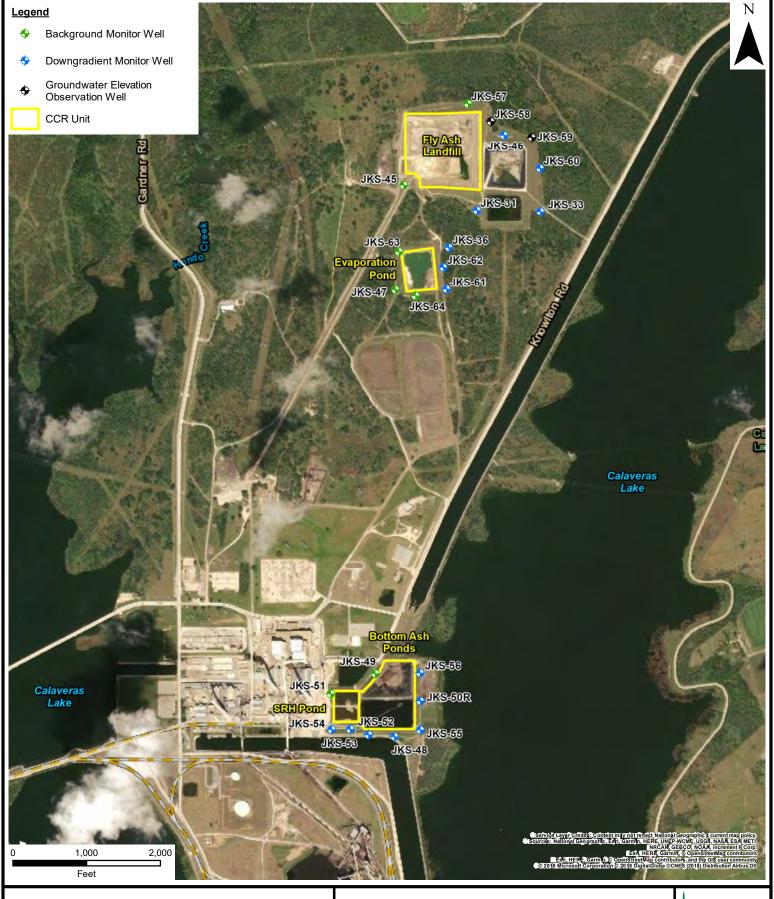
 DESIGN:
 NH
 DRAWN:
 EFC
 CHKD.:
 WZ


 DATE:
 7/25/2016
 SCALE:
 AS SHOWN
 REVISION:
 1

 W.O.NO.:
 K:\GIS\CPS\Calaveras\MXD\0337367_CPSCalaveras_SiteLoc.mxd

FIGURE 1 GENERAL SITE LOCATION MAP

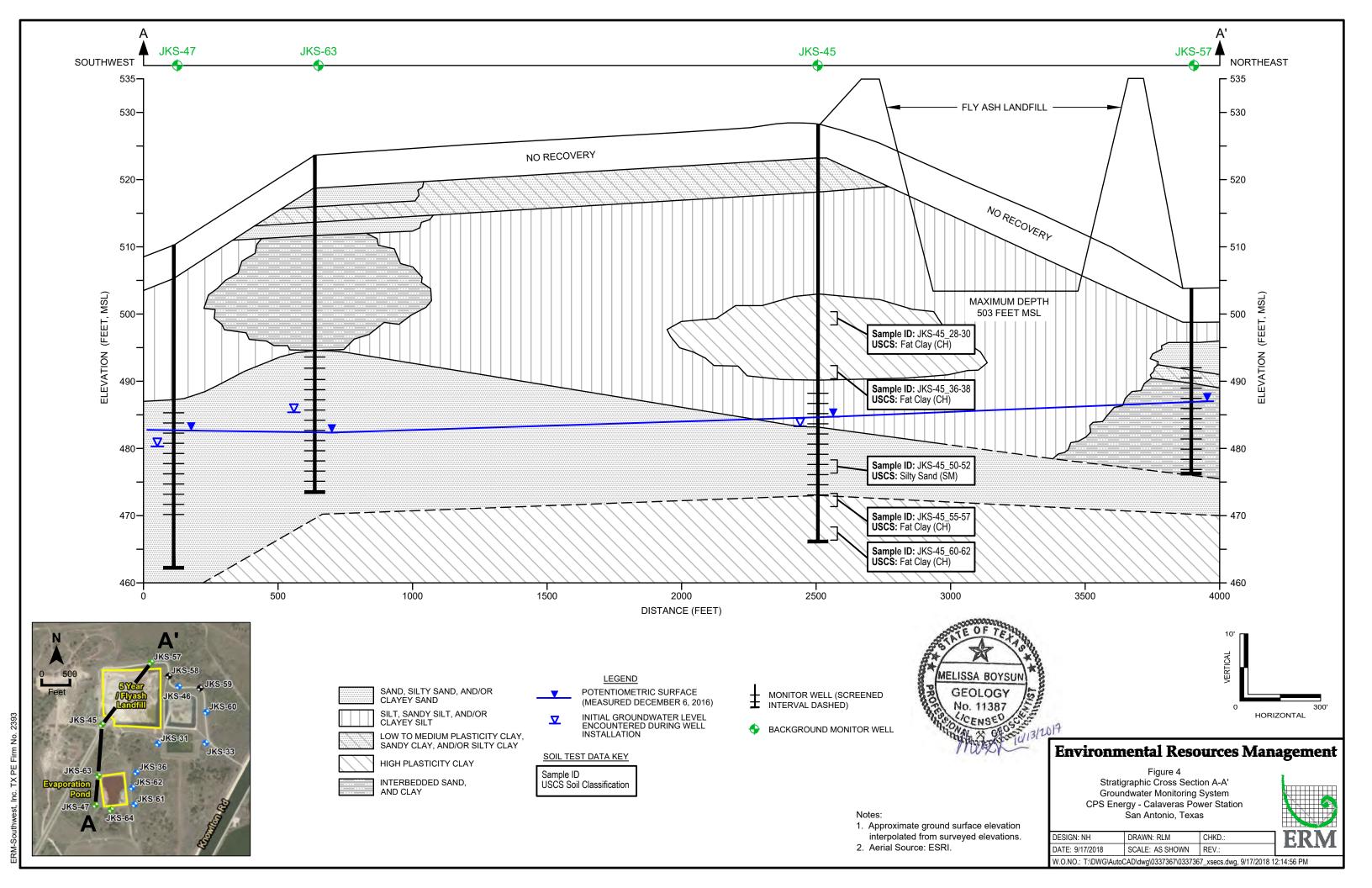
CPS Energy - Calaveras Power Station San Antonio, Texas

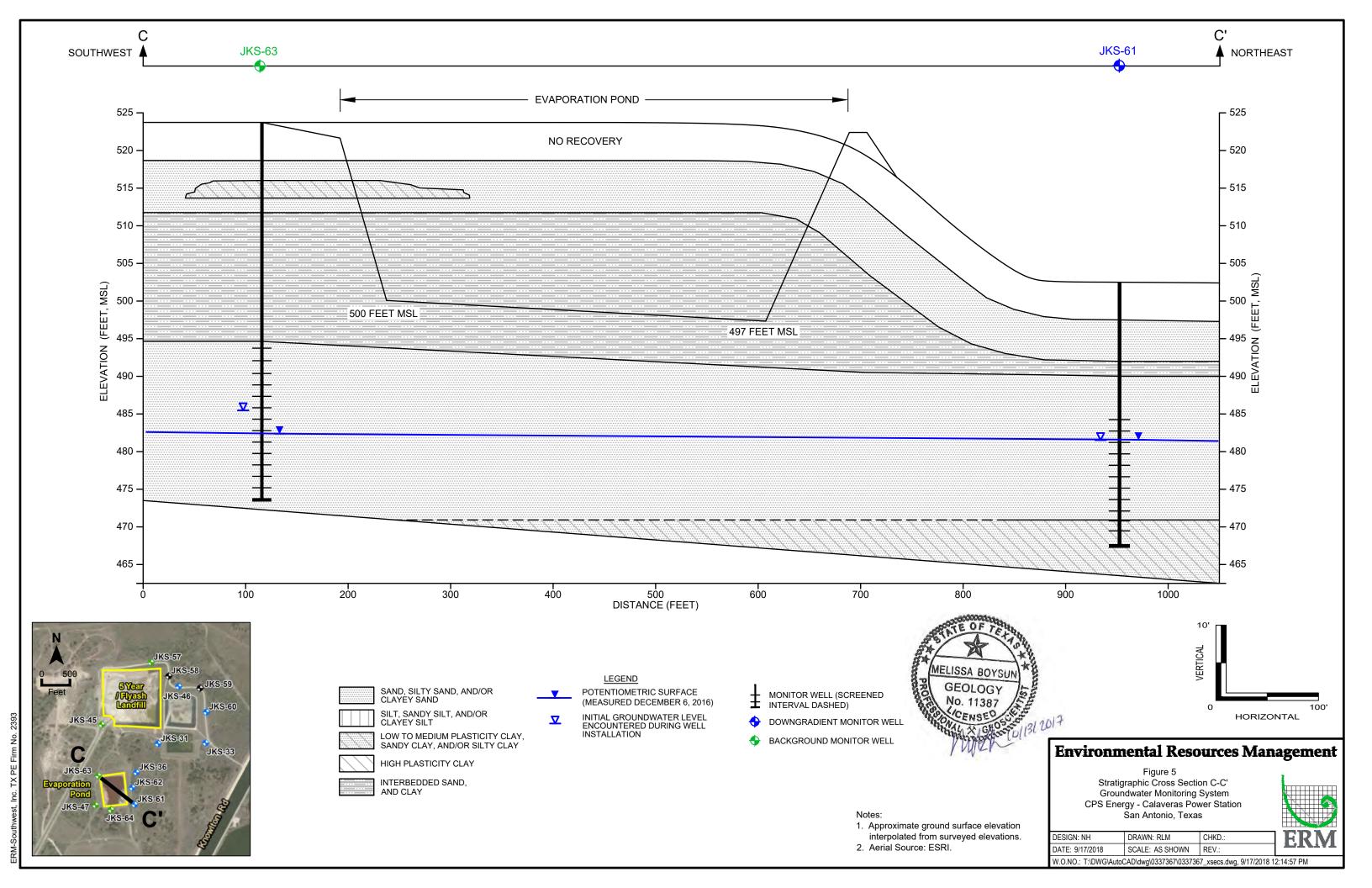

Environmental Resources Management

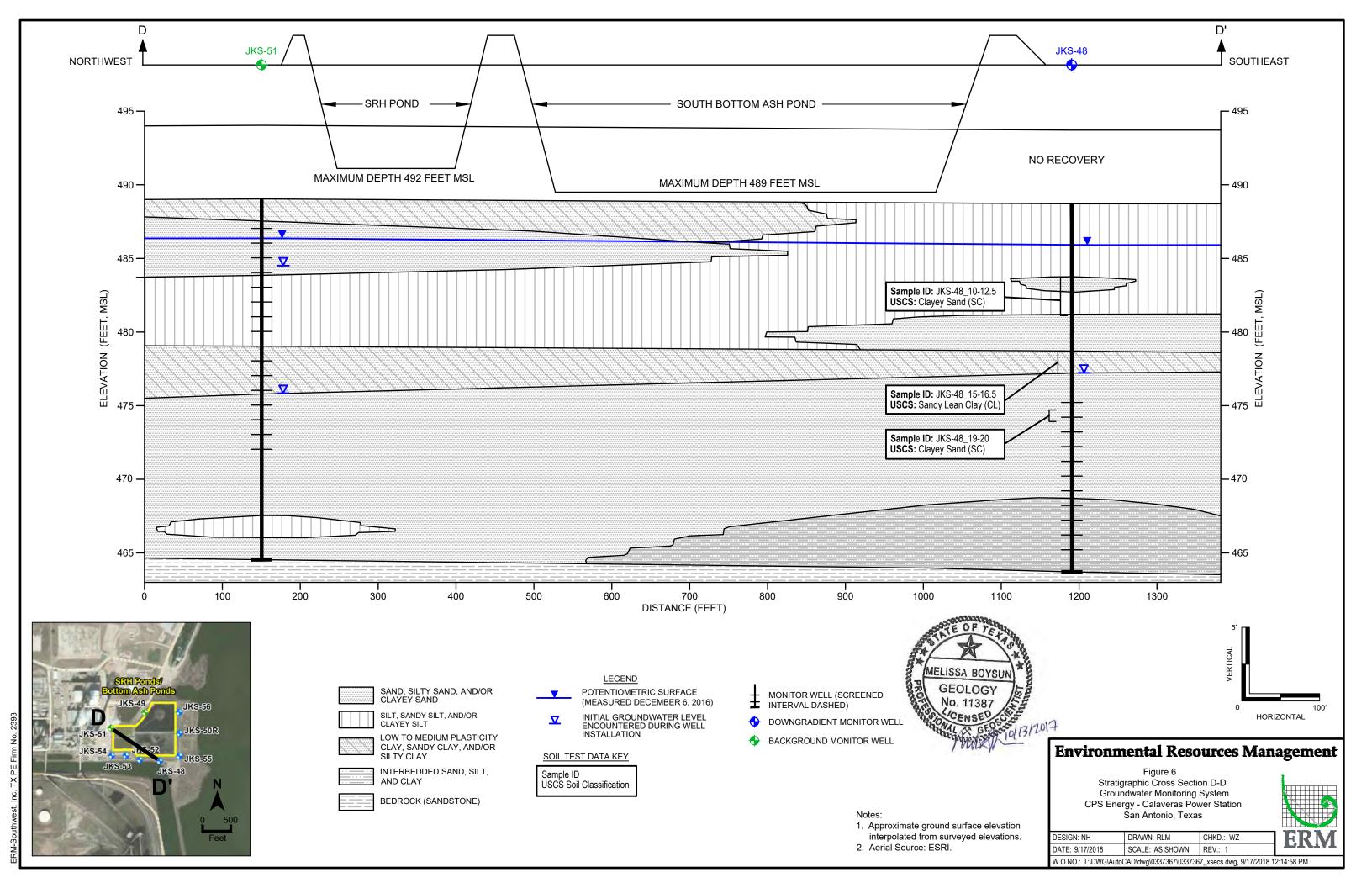
DESIGN: CC DRAWN: RLM CHKD.: CC DATE: 9/19/2018 SCALE: AS SHOWN REV.: W.O. NO.: T:\DWG\AutoCAD\dwg\0337367\0337367_CCRUnitLocs_topo.dwg

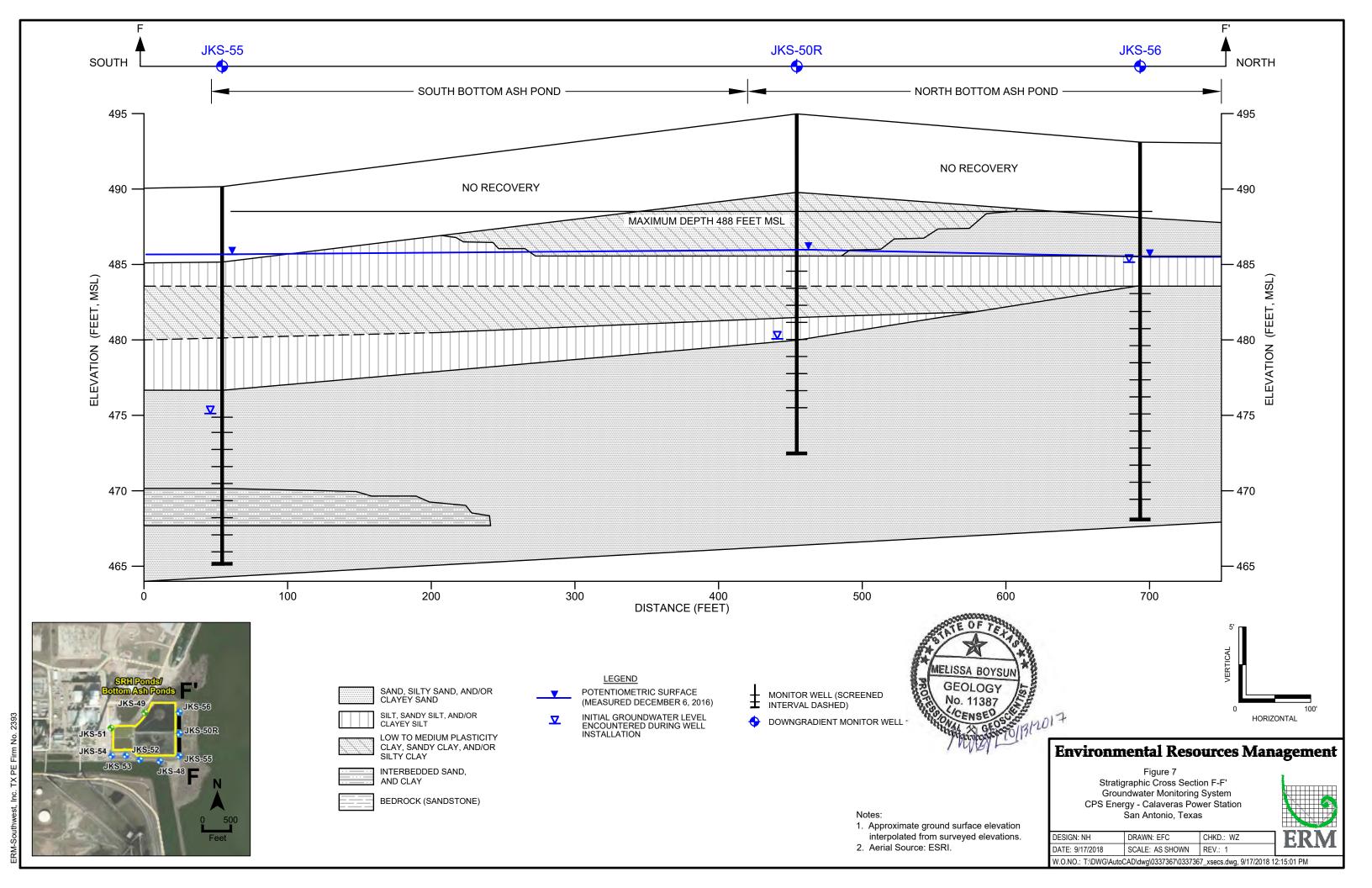
FIGURE 2 **CCR UNIT LOCATIONS**

CPS Energy - Calaveras Power Station San Antonio, Texas




Environmental Resources Management


FIGURE 3
CCR WELL NETWORK LOCATION MAP


CPS Energy - Calaveras Power Station San Antonio, Texas

APPENDIX G STRUCTURAL STABILITY AND SAFETY FACTOR ASSESSMENTS

October 17, 2016

Mr. Michael Malone CPS Energy 145 Navarro, Mail Drop 100406 San Antonio, Texas 78296

Project No. 0352436

Subject: Structural Stability and Safety Factor Assessments

Calaveras Power Station San Antonio, Texas

Dear Mr. Malone:

Environmental Resources Management Southwest, Inc. (ERM) is pleased to provide this review of structural stability and safety factor assessments performed at the Calaveras Power Station, to assist CPS Energy in complying with Title 40, Code of Federal Regulations, Part 257 (40 CFR §257), Subpart D Coal Combustion Residual (CCR) Rules.

The Calaveras Power Station has five CCR surface impoundments: the North and South Sludge Recycle Holding (SRH) Ponds, the North and South Bottom Ash Ponds (BAPs), and the Evaporation Pond (EP). All ponds were constructed as diked impoundments. The SRH Ponds were constructed as a single impoundment with a divider wall that separates the impoundment into the North and South Ponds. A gate present in the divider wall is closed during normal operating procedures, but can be opened. The North and South BAPs share a common embankment that separates the ponds, and are immediately east of the SRH Pond. Only one BAP is typically in operation at one time. These four ponds are located east of the main Plant site. The EP is approximately a mile north of the main plant, and receives boiler chemical cleaning wastes. While this material is not considered CCR under the regulation, the EP was originally constructed as a fly ash landfill in 1990, and then converted to a fly ash impoundment in 1996. It currently contains solids that are six inches to two feet below the top of the impoundment.

40 CFR §257.73(d) requires that facilities conduct initial and periodic structural stability assessments for CCR surface impoundments to document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein. Table 1 provides a summary of the requirements within the regulation, and the relevant information for each surface impoundment.

Environmental Resources Management

CityCentre Four 840 W. Sam Houston Pkwy N. Suite 600 Houston, Texas 77024 (281) 600-1000 (281) 600-1001 (Fax)

Environmental Resources Management

Factors of safety were calculated by Raba Kistner Consultants, Inc. (RKCI) in May 2014. These assessments were provided in a report entitled "Geotechnical Engineering Study for Ash Pond Berms – Spruce/Deely Generation Units, San Antonio, Texas." ERM reviewed the information in these reports to evaluate whether factors of safety met the limits set forth in 40 CFR §257.73(e). All but one embankment evaluated by RKCI met the safety factor limits. The single noncomplying safety factor was for the exterior slope of the northwestern berm on the North BAP, identified as cross-section or Embankment G. The steady-state safety factor for Embankment G was calculated at 1.2, and 1.4 on a reanalysis using a deeper failure surface. The minimum required safety factor for steady-state conditions is 1.5.

The RKCI report indicated that slopes used in the calculation for Embankment G were based on design drawings and field observations, not actual surveys. CPS Energy therefore engaged the services of a land surveyor (Pape-Dawson Engineers, Inc.) to collect measurements in two locations along Embankment G. The results of this survey, and the original RKCI soil data, were provided to HTS, Inc. Consultants (HTS), a geotechnical consulting firm in Houston, Texas. HTS recalculated the steady-state factor of safety utilizing the actual survey data. The calculated safety factors for both slopes were greater than 4. The letter report from HTS is included in Attachment 1.

Based on our evaluation of the available information for the impoundments, the structural stability and safety factor assessments meet the requirements of 40 CFR §257.73(d) and (e).

Sincerely,

Environmental Resources Management

Ghris Cunningham, P.E.

Table 1 Attachment 1

TABLE 1
Summary of Impoundment Requirements

Regulatory Citation	Requirement	Sludge Recycle Holding Ponds	Bottom Ash Ponds	Evaporation Pond
(d)(1)(i)	Stable foundations and abutments	Based on calculated factors of safety, foundations and abutments are stable.	Based on calculated factors of safety, foundations and abutments are stable.	Based on calculated factors of safety, foundations and abutments are stable.
(d)(1)(ii)	Adequate slope protection to protect against surface erosion, wave action, and adverse effects of sudden drawdown	Slopes are vegetated with a continuous, maintained grass cover and inspected regularly for evidence of erosion.	Slopes are vegetated with a continuous, maintained grass cover and inspected regularly for evidence of erosion.	Slopes are vegetated with a continuous, maintained grass cover and inspected regularly for evidence of erosion.
(d)(1)(iii)	Dikes mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit	Based on geotechnical analysis and current slope conditions, it is likely that the dikes were mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit. Construction records documenting this are not available.	Based on geotechnical analysis and current slope conditions, it is likely that the dikes were mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit. Construction records documenting this are not available.	Based on geotechnical analysis and current slope conditions, it is likely that the dikes were mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit. Construction records documenting this are not available.
(d)(1)(iv)	Vegetated slopes of dikes and surrounding areas not to exceed a height of six inches above the slope of the dike	Grass on slopes is regularly mowed to maintain height below six inches.	Grass on slopes is regularly mowed to maintain height below six inches.	Grass on slopes is regularly mowed to maintain height below six inches.
(d)(1)(v)(A)	All spillways must be either: (1) Of non-erodible construction and designed to carry sustained flows; or (2) Earth- or grass-lined and designed to carry short-term, infrequent flows at nonerosive velocities where sustained flows are not expected.	Overflow spillways are concrete-lined. Regular discharge is via pumps through steel piping.	Ponds discharge via steel piping for regular and overflow discharges.	Not applicable. There are no outfalls for the pond.
(d)(1)(v)(B)	Spillways must adequately manage flow during and following the peak discharge from the required design storm flow.	Inflow during a storm is limited to direct precipitation. Sufficient headboard is maintained to capture design storm flow without requiring discharge.	Inflow during a storm is limited to direct precipitation. Sufficient headboard is maintained to capture design storm flow without requiring discharge.	Inflow during a storm is limited to direct precipitation. Sufficient headboard is maintained to capture design storm flow without requiring discharge.
(d)(1)(vi)	Hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit must maintain structural integrity	Not applicable. There are no hydraulic structures underlying the pond.	Steel pipes acting as outfalls are regularly inspected to verify no erosion or damage.	Not applicable. There are no hydraulic structures underlying the pond.
(d)(1)(vii)	Maintain structural stability during low pool of the adjacent water body or sudden drawdown of the adjacent water body.	Toe of embankments are at or above pool elevation of Calaveras Lake, which is maintained artificially. Therefore, no rapid drawdown or low pool conditions are likely.	Toe of embankments are at or above pool elevation of Calaveras Lake, which is maintained artificially. Therefore, no rapid drawdown or low pool conditions are likely.	Toe of embankments are at or above pool elevation of Calaveras Lake, which is maintained artificially. Therefore, no rapid drawdown or low pool conditions are likely.

Environmental Resources Management

HTS, Inc. Consultants

416 Pickering Street, Houston, TX 77091 www.htshouston.com

Phone 713-692-8373 Fax 713-692-8502 Toll Free 1-800-692-TEST

Excellence in Engineering, Consulting, Testing and Inspection

July 20, 2016

ERM, Inc. 840 W. Sam Houston Parkway N. Suite 600 Houston, Texas 77024

Attn: Mr. Chris Cunningham P.E.

Re: Letter Report

Steady State Slope Stability Analysis

Ash Pond Berms - Spruce/Deely Generation Units

San Antonio, Texas

HTS Project No.: 16-S-303

Dear Mr. Cunningham:

This letter provides results of the slope stability analyses performed on the 2 sections provided by ERM, Inc. The original geotechnical investigation (report dated May 7, 2014) was performed by Raba Kistner Consultants (RKC). HTS was requested to perform steady state slope stability analyses on 2 sections that were modified due to low factors of safety (below 1.5) against a slope stability failure.

Slope stability analyses were performed using the soil parameters provided on page 11 of RKC report and the subsoil profile defined by Geotechnical Boring No. 7 which is located near section G as presented in RKC report, Figures A-1 and C-1b. The 2 section configurations used in our slope stability analyses are presented in Appendix A.

Slope stability analyses were performed in order to determine the factors of safety of the side slopes of the section configurations against a slope stability failure. The long term (steady state) shear strengths of the cohesive soils are based on the shear strength parameters from consolidated undrained triaxial tests performed and presented on the table on page 11 of RKC report. The cohesion and angle of friction for sands were assumed to be zero and 28°, respectively, for a conservative approach. The water gradient was also considered to be close to the ground surface for a conservative analysis. The results of these analyses are shown below and in Appendix B.

SECTION	FACTOR OF SAFETY (LONG TERM CONDITION)
Section Along CSA	4.06
Section Along CSB	4.08

The results of the stability analyses using the shear strength parameters as discussed above suggest that the slopes of the section configurations provided by ERM will be stable in the long term condition.

Should you have any questions or require additional information pertaining to this letter, please do not hesitate to contact us at your convenience.

Sincerely,

HTS, Inc. Consultants

Bonifacio F. Musngi Jr., P.E.

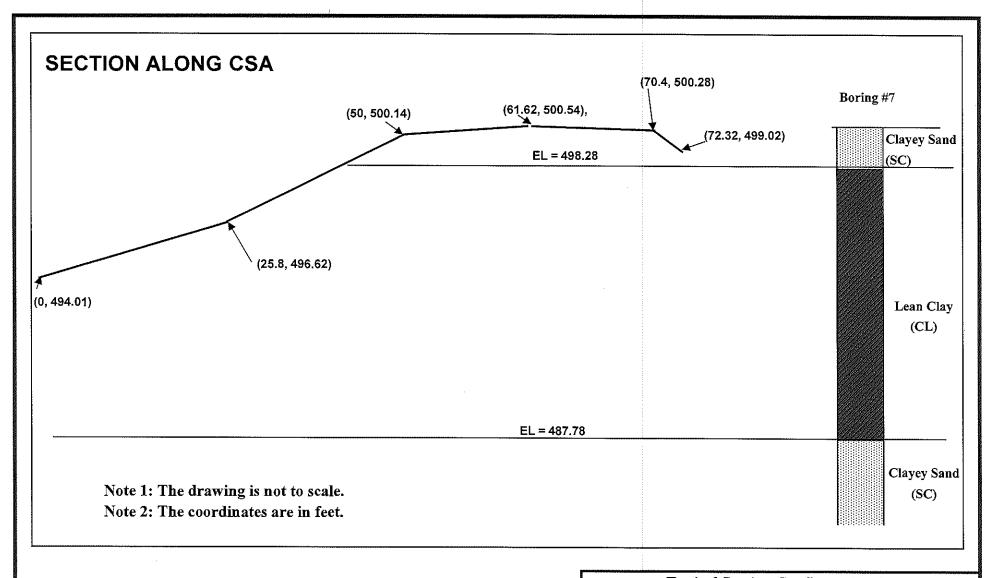
Senior Engineer

HTS, Inc. Consultants F-3478

BONIFACIO F. MUSNGI, JE

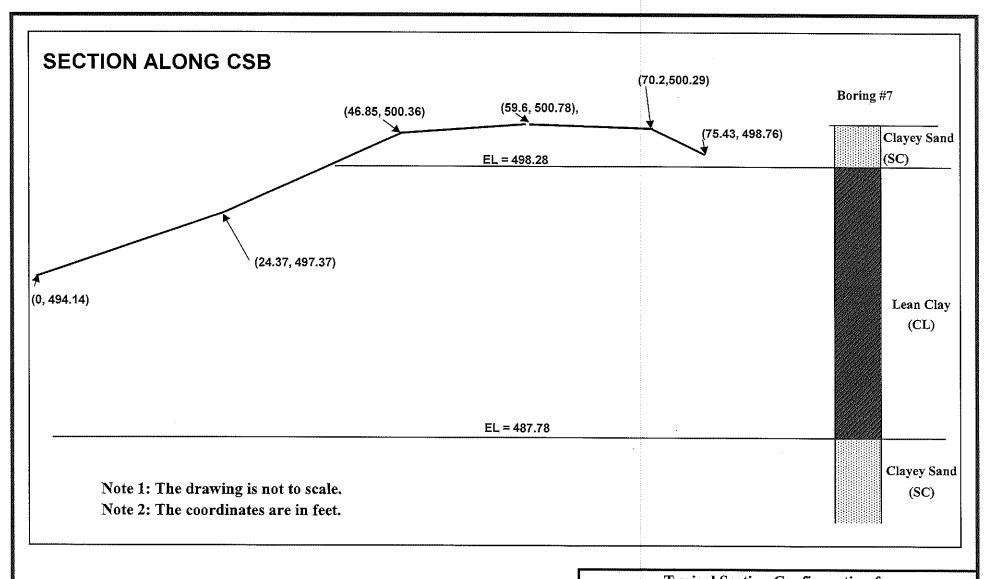
Attachments: Appendix A - Slope Section Configurations

Appendix B – Slope Stability Analyses Results


BFM/ba/cg

h:word/2016/300-349/16-303

APPENDIX A


Typical Section Configuration for Slope Stability Analyses - Section Along CSA

Steady State Slope Stability Analysis
Ash Pond Berms - Spruce/Deely Generation Units
San Antonio, Texas

Date: 7/18/16 HTS P

HTS Proj No.: 16-S-303

Plate 1

Typical Section Configuration for Slope Stability Analyses - Section Along CSB

Steady State Slope Stability Analysis
Ash Pond Berms - Spruce/Deely Generation Units
San Antonio, Texas

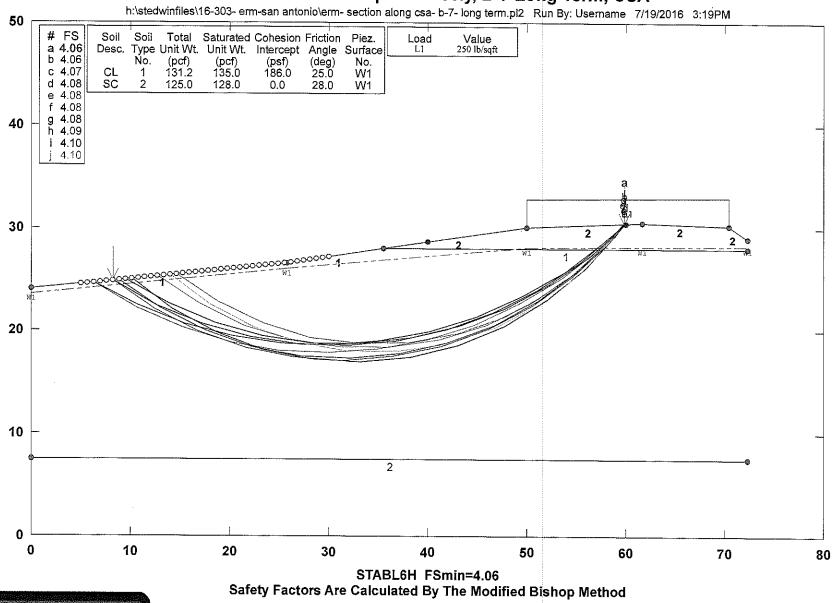
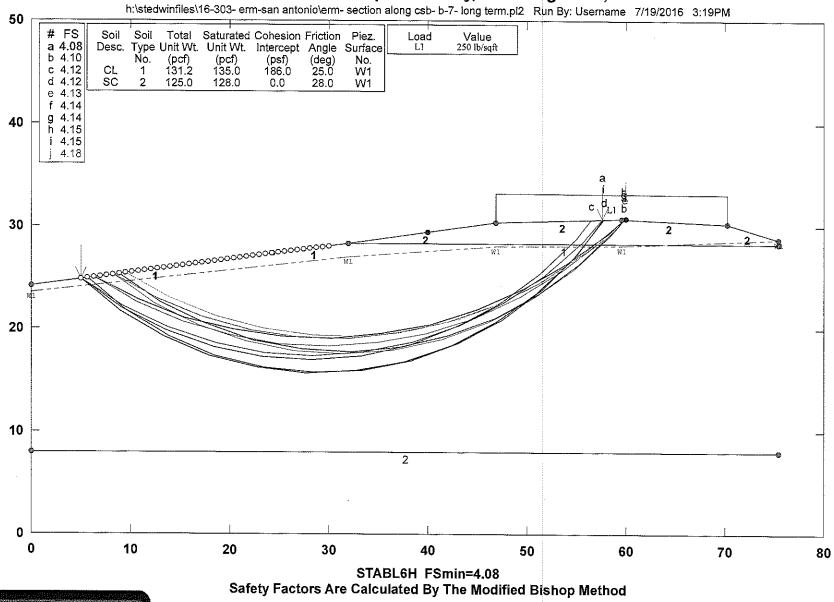

Date: 7/18/16 HTS Proj No.: 16-S-303

Plate 2

APPENDIX B



Ash Pond Berms - Spruce/Deely, B-7 Long Term, CSA

Ash Pond Berms - Spruce/Deely, B-7 Long Term, CSB

ERM has over 160 offices across the following countries and territories worldwide

Argentina The Netherlands Australia New Zealand Belgium Norway Brazil Panama Canada Peru Chile Poland China Portugal Colombia Puerto Rico France Romania Germany Russia Ghana Senegal Guyana Singapore South Africa Hong Kong India South Korea Indonesia Spain Ireland Sweden Italy Switzerland Taiwan Japan Kazakhstan Tanzania Kenya Thailand Malaysia UAE Mexico UK Mozambique US Myanmar Vietnam

ERM's Austin Office

Capitol Tower

206 East 9th Street, Suite 1700 Austin, Texas 78701

T: 512 459 4700 F: 512 597 8368

www.erm.com

