

Annual Groundwater Monitoring and Corrective Action Report

CPS Energy Calaveras Power Station – Fly Ash Landfill San Antonio, Texas

January 2019

www.erm.com

Calaveras Power Station - Fly Ash Landfill

Annual Groundwater Monitoring and Corrective Action Report

January 2019

Project No. 0337367 San Antonio, Texas

Jeffery L. Bauguss, P.E. Partner-in-Charge

merina

Walter Zvering Project Manager

lon

Karen Fletcher Senior Scientist

Environmental Resources Management

206 East 9th Street, Suite 1700 Austin, TX 78701 T: 512-459-4700

Texas Registered Engineering Firm F-2393 Texas Board of Professional Geoscientist Firm 50036

© Copyright 2019 by ERM Worldwide Group Ltd and/or its affiliates ("ERM"). All Rights Reserved. No part of this work may be reproduced or transmitted in any form, or by any means, without the prior written permission of ERM.

TABLE OF CONTENTS

1.	INT	ROI	DUCTION	1
2.	PRO	OGR	RAM STATUS	2
2.	.1.	GR	OUNDWATER FLOW RATE AND DIRECTION	2
2.	.2.	SAN	MPLING SUMMARY	2
2.	.3.	DA	TA QUALITY	2
3.	STA	TIST	TICAL ANALYSIS AND RESULTS	3
3.	.1.	INT	TERWELL VERSUS INTRAWELL COMPARISONS	3
3.	.2.	EST	TABLISHMENT OF UPGRADIENT DATASET	3
	3.2.1	1.	Descriptive Statistics	3
	3.2.2	2.	Outlier Determination	4
	3.2.3	3.	Check for Temporal Stability	4
3.	.3.	CAI	LCULATION OF PREDICTION LIMITS	4
3.	.4.	CO	NCLUSIONS	5
4.	REC	СОМ	IMENDATIONS	6
5.	REF	ERE	ENCES	6

List of Tables

1	Groundwater Elevations Summary
2	Groundwater Sampling Summary
3	Groundwater Analytical Results Summary

List of Figures

1	CCR Well Network Location Map
2	Potentiometric Surface Map – October 2018

List of Appendices

A Laboratory Data Packages	
----------------------------	--

- B Statistical Analysis Tables and Figures
- C April 2018 Groundwater Sampling Event Calaveras Power Station CCR Units

1. INTRODUCTION

CPS Energy owns and operates the Calaveras Power Station which consists of two power plants (J.T Deely and J.K. Spruce) that are subject to regulation under Title 40, Code of Federal Regulations, Part 257 (40 CFR §257) (a.k.a. the CCR Rule). The Power Station is located in unincorporated Bexar County, Texas, approximately 13 miles southeast of San Antonio. Currently, CPS Energy operates four CCR units at the Power Station: Fly Ash Landfill, Bottom Ash Ponds, Evaporation Pond, and the Sludge Recycle Holding Pond. This *Annual Groundwater Monitoring and Corrective Action Report* (Report) addresses the Fly Ash Landfill. The other units listed above are discussed in separate reports.

This Report was produced by Environmental Resource Management (ERM), on behalf of CPS Energy, and summarizes the groundwater monitoring activities for the Fly Ash Landfill and provides a statistical summary of the findings for samples collected during the 2018 semiannual monitoring events. Consistent with the requirements of the CCR Rule, this Report will be posted to the facility's operating record and notification will be made to the State of Texas. Additionally, this Report will be placed on the CPS Energy publically accessible internet site. Unless otherwise mentioned, the analyses in this Report follow the *Groundwater Sampling and Analysis Program* (SAP) (ERM, 2017) posted on the internet site. The table below cross references the reporting requirements under the CCR Rule with the contents of this Report.

Regulatory Citation	Requirement (paraphrased)	Where Addressed in this Report			
§257.90(e)	Status of the groundwater monitoring and corrective action program	Section 2			
§257.90(e)	Summarize key actions completed	Section 2			
§257.90(e)	Describe any problems encountered and actions to resolve problems	Section 2			
§257.90(e)	Key activities for upcoming year	Section 4			
§257.90(e)(1)	Map or aerial image of CCR unit and monitoring wells	Figure 1			
§257.90(e)(2)	Identification of new monitoring wells installed or decommissioned during the preceding year	Section 2			
§257.90(e)(3)	Summary of groundwater data, monitoring wells and dates sampled, and whether sample was required under detection or assessment monitoring	Sections 2 and 3, Tables 1 through 3, and Figure 2			
§257.90(e)(4)	Narrative discussion of any transition between monitoring programs	Section 4			

Regulatory Requirement Cross-Reference

The Fly Ash Landfill is located northeast of the Power Station generating units and is north of the Evaporation Pond. The Fly Ash Landfill currently receives fly ash, bottom ash, economizer ash, scrubber sludge from flue gas desulphurization ponds, and flue gas desulphurization gypsum. The Fly Ash Landfill was constructed in 1992. The CCR unit location is shown on Figure 1.

2. PROGRAM STATUS

From December 2016 to October 2017, groundwater samples were collected as part of background sampling. After October 2017, groundwater samples were collected as part of detection monitoring. The samples were collected from the groundwater monitoring well network certified for use in determining compliance with the CCR Rule.

The groundwater monitoring well network consists of two upgradient monitoring wells (JKS-45 and JKS-57) and four downgradient monitoring wells (JKS-31, JKS-33, JKS-46, and JKS-60). All monitoring wells are screened within the uppermost groundwater bearing unit (GWBU). The uppermost GWBU is approximately 5 to over 25 feet thick and is comprised of clayey/silty sand to well-sorted sand. The uppermost GWBU is located below unconsolidated material (i.e., sands, silts, and low to medium plasticity clays), and above a high plasticity clay (lower confining unit).

The monitoring well locations are shown in Figure 1. No problems were encountered in the data collection or in well performance, and no action was required to resolve any issues. No new monitoring wells were installed or decommissioned after the certification of the well network.

2.1. GROUNDWATER FLOW RATE AND DIRECTION

Depth to groundwater surface measurements were made at each monitoring well prior to sampling. Groundwater elevations were calculated by subtracting the depth to groundwater measurement from the surveyed reference elevation for each well.

Groundwater elevations collected during the monitoring events are summarized in Table 1. Groundwater elevations and the potentiometric surface for the most recent monitoring event (October 2018) are shown on Figure 2. Groundwater in the vicinity of the Fly Ash Landfill appears to flow towards Lake Calaveras (east to northeast). The horizontal gradient is approximately 0.005 feet/foot.

2.2. SAMPLING SUMMARY

A summary of the total number of samples collected from each monitoring well is provided in Table 2. Groundwater analytical results from the monitoring events are summarized in Table 3. Laboratory data packages are provided in Appendix A.

The Fly Ash Landfill monitoring wells were sampled by CPS Energy using low flow sampling techniques during the monitoring events. No data gaps were identified during the 2018 semiannual groundwater monitoring events.

2.3. DATA QUALITY

ERM reviewed field and laboratory documentation to assess the validity, reliability and usability of the analytical results. Samples were sent to Xenco Laboratories, located in San Antonio, Texas for analysis. Data quality information reviewed for these results included field sampling forms, chain-of-custody documentation, holding times, lab methods, cooler temperatures, laboratory method blanks, laboratory control sample recoveries, field duplicate samples, matrix spikes / matrix spike duplicates, quantitation limits, and equipment blanks. A

summary of the data qualifiers are included in Table 3. The data quality review found the results to be valid, reliable, and useable for decision making purposes with the listed qualifiers. No analytical results were rejected.

3. STATISTICAL ANALYSIS AND RESULTS

Consistent with the CCR Rule and the SAP, a prediction limit approach [40 CFR §257.93(f)] was used to identify potential impacts to groundwater. Tables and figures generated as part of the statistical analysis are provided in Appendix B. The steps outlined in the decision framework in the SAP include:

- Interwell versus intrawell comparisons;
- Establishment of upgradient dataset;
- Calculation of prediction limits; and
- Conclusions.

The remaining sections of this Report are focused on evaluation of the October 2018 sampling results. Note the April 2018 sampling results were evaluated as discussed in the *April 2018 Groundwater Sampling Event – Calaveras Power Station CCR Units* (ERM, 2017) provided in Appendix C.

3.1. INTERWELL VERSUS INTRAWELL COMPARISONS

When multiple upgradient wells were available within the same unit, concentrations were compared among these wells to determine if they could be pooled to create a single, interwell, upgradient dataset. For each analyte, Boxplots (Appendix B, Figure 1) and Kruskal-Wallis test results (Appendix B, Table 1) are provided for upgradient wells. The statistical test shows that:

- One Appendix III analyte [chloride] will follow interwell analysis, with no significant differences present in upgradient data; and
- The remaining six Appendix III analytes [boron, calcium, fluoride, pH, sulfate, and total dissolved solids (TDS)] will follow intrawell analysis, with significant differences present in upgradient data.

Interwell analytes will use a pooled upgradient dataset for subsequent report sections. Conversely, intrawell analytes will have each individual upgradient dataset used for subsequent report sections.

3.2. ESTABLISHMENT OF UPGRADIENT DATASET

When evaluating the concentrations of analytes in groundwater, USEPA Unified Guidance (2009) recommends performing a careful quality check of the data to identify any anomalies. In addition to the data validation that was performed, descriptive statistics, outlier testing, and temporal stationarity checks were completed to finalize the upgradient dataset.

3.2.1. Descriptive Statistics

Descriptive statistics were calculated for the upgradient wells and analytes at the Fly Ash Landfill (Appendix B, Table 2). The descriptive statistics highlight a number of relevant characteristics about the upgradient datasets including:

- There are a total of 13 well-analyte combinations for the upgradient dataset;
- 13 well-analyte combinations have detection rates greater than or equal to 50 percent;
- 11 well-analyte combinations have 100 percent detects;
- Seven well-analyte combinations follow a normal distribution (using Shapiro-Wilks Normality Test);
- One well-analyte combination follows a log-normal distribution; and
- Five well-analyte combinations have no discernible distribution.

3.2.2. Outlier Determination

Both statistical and visual outlier tests were performed on the upgradient datasets. Data points identified as both a statistical and visual outliers (Appendix B, Table 3 and Appendix B, Figure 2) were reviewed before they were excluded from the dataset. A total of six potential outliers were initially flagged in the upgradient datasets. After review, it was determined that five of the six values were consistent with seasonal fluctuations and concentrations detected in other upgradient wells or in historical groundwater sampling results. No analytical or sampling issues were identified for five potential outliers during data review; therefore, the five values were considered valid and were retained for upper prediction limit (UPL) calculations.

3.2.3. Check for Temporal Stability

A trend test was performed for all values in the upgradient wells that had at least eight detected data points and at least 50 percent detection rate. Time series figures of upgradient wells are provided in Appendix B, Figure 3. Additionally, the Mann Kendall trend test results are provided in Appendix B, Table 4. The following summarize the results of the trend analysis:

- There are a total of 13 well-analyte combinations in the upgradient dataset;
- 12 well-analyte combinations meet the data requirements of the trend test of which:
 - Three well-analyte combinations had a significant increasing trend;
 - No well-analyte combinations had a significant decreasing trend; and
 - Nine well-analyte combinations had no significant trend (i.e., concentrations were stable over time).

3.3. CALCULATION OF PREDICTION LIMITS

A multi-part assessment of the monitoring wells was performed to determine what type of upper prediction limit (UPL) to calculate as a compliance point. A decision framework was applied for each upgradient well based on inter/intrawell analysis, data availability, and presence of temporal trends.

Upgradient wells that had fewer than eight detected values had a UPL based on the maximum concentration of the upgradient dataset. The single well-analyte combination that did not meet the minimum data requirements for a calculated UPL was fluoride in well JKS-45.

A total of three well-analyte combinations were found to have either increasing or decreasing trends. For these well-analyte combinations, a bootstrapped UPL calculated around a Theil Sen trend was used to derive a more accurate UPL. The remaining nine well-analyte combinations

were found to have no significant trend. Sanitas was used to calculate static UPLs using an annual site-wide false positive rate of 0.1 with a 1-of-2 re-testing approach.

A final UPL was selected for each analyte and compared to the October 2018 sampling results in the downgradient wells. A final lower prediction limit (LPL) was also selected for pH. For the one analyte following interwell analysis, the upgradient dataset was pooled prior to UPL calculations, resulting in a single UPL value per analyte. For the six analytes following intrawell analysis, a UPL value was calculated for each of the upgradient wells. For these wells and analytes, the maximum UPL was selected as the representative UPL for each analyte. A similar approach was used to determine the LPL for pH, however, the minimum LPL was selected in the case of intrawell analysis. All final UPL and LPL values are shown in the table below. Full upgradient well calculations are provided in Appendix B, Table 5.

Analysis Type	Analyte	LPL	UPL	Unit
Intrawell	Boron		4.22	mg/L
Intrawell	Calcium		453	mg/L
Interwell	Chloride		380	mg/L
Intrawell	Fluoride		5.19	mg/L
Intrawell	pН	3.98	6.73	SU
Intrawell	Sulfate		6,370	mg/L
Intrawell	TDS		11,200	mg/L

Final UPL and LPL Values

3.4. CONCLUSIONS

The downgradient samples collected during the October 2018 monitoring event were used for compliance comparisons. All downgradient wells were below the UPLs and above the LPLs with the following exceptions shown in the table below. Full downgradient results are provided in Appendix B, Table 6.

Analyte	Well	LPL	UPL	Sample Date	Value	Unit
Chloride	JKS-33		380	2018-10-30	758	mg/L
pН	JKS-31	3.98	6.73	2018-10-30	3.07	SU
pН	JKS-46	3.98	6.73	2018-10-30	3.00	SU

Downgradient Results Exceedances

All initial exceedances of the UPL and LPL may be confirmed with re-testing of the downgradient wells per the 1-of-2 re-testing scheme. If the initial exceedance is confirmed with re-testing results from the same well, the well-analyte combination will be declared a statistically significant increase (SSI) above background. Any wells with re-testing results at or below the UPL, or at or above the LPL, will be considered in compliance and will not require further action. These resampling results will be reported in the next *Annual Groundwater Monitoring and Corrective Action Report*.

All downgradient wells with initial exceedances were examined for trends to assess the stability of concentrations. A summary of these trend test results are provided in Appendix B, Figure 4. None of the downgradient wells with potential SSIs have significant trends.

4. **RECOMMENDATIONS**

Currently, there are no plans to transition from detection monitoring to assessment monitoring. Consistent with the 1-of-2 re-testing approach described in the Unified Guidance and the SAP, initial exceedances may be re-tested within 90 days. Based on these re-testing results, if an SSI is found, a notification or *Written Demonstration* will be prepared within 90 days. Based on the findings of the *Written Demonstration*, detection monitoring or assessment monitoring will be initiated as appropriate under §257.94 and §257.95.

5. **REFERENCES**

ERM, 2017. Groundwater Sampling and Analysis Program.

USEPA, 2009. *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities*. Unified Guidance. USEPA/530/R/09/007. Office of Resource Conservation and Recovery. Washington, D.C.

Tables

TABLE 1 Groundwater Elevations Summary CPS Energy - Calaveras Power Station Fly Ash Landfill

		JKS-45 U	ogradient	JKS-57 U	pgradient	JKS-58 Wate	r Level Only	JKS-59 Water Level Only	
	-	TOC Elevation	531.46	TOC Elevation	506.91	TOC Elevation	504.45	TOC Elevation	496.45
Sampling Event	Sampling Event Dates	Depth to Water (feet btoc)	Water Level (msl)						
1	12/6/16 to 12/8/16	46.83	484.63	19.89	487.02	18.85	485.60	15.67	480.78
2	2/21/17 to 2/23/17	46.64	484.82	18.95	487.96	15.95	488.50	14.12	482.33
3	3/28/17 to 3/30/17	46.52	484.94	18.20	488.71	15.10	489.35	14.12	482.33
4	5/2/17 to 5/4/17	46.35	485.11	18.80	488.11	16.50	487.95	14.94	481.51
5	6/20/17 to 6/21/17	46.64	484.82	20.23	486.68	18.38	486.07	16.46	479.99
6	7/25/17 to 7/26/17	46.38	485.08	21.16	485.75	15.63	488.82	17.80	478.65
7	8/29/17 to 8/30/17	46.73	484.73	19.44	487.47	19.90	484.55	17.77	478.68
8	10/10/17 to 10/11/17	46.50	484.96	21.67	485.24	20.67	483.78	18.00	478.45
9	4/4/18 to 4/5/18	46.59	484.87	23.22	483.69	21.86	482.59	17.36	479.09
10	10/30/18 to 10/31/18	46.55	484.91	24.65	482.26	21.63	482.82	19.00	477.45

		JKS-31 Dov	wngradient	JKS-33 Dov	wngradient	JKS-46 Dov	wngradient	JKS-60 Downgradient		
		TOC Elevation	507.45	TOC Elevation	498.71	TOC Elevation	499.08	TOC Elevation	495.70	
Sampling Event	Sampling Event Dates	Depth to Water (feet btoc)	Water Level (msl)							
1	12/6/16 to 12/8/16	27.01	480.44	18.03	480.68	17.61	481.47	17.15	478.55	
2	2/21/17 to 2/23/17	26.50	480.95	17.32	481.39	16.30	482.78	16.34	479.36	
3	3/28/17 to 3/30/17	25.98	481.47	16.99	481.72	16.10	482.98	15.93	479.77	
4	5/2/17 to 5/4/17	26.60	480.85	17.27	481.44	16.70	482.38	15.96	479.74	
5	6/20/17 to 6/21/17	26.70	480.75	18.08	480.63	17.98	481.10	16.43	479.27	
6	7/25/17 to 7/26/17	26.77	480.68	18.50	480.21	18.80	480.28	17.00	478.70	
7	8/29/17 to 8/30/17	26.58	480.87	18.23	480.48	18.91	480.17	17.52	478.18	
8	10/10/17 to 10/11/17	26.73	480.72	18.10	480.61	19.37	479.71	17.20	478.50	
9	4/4/18 to 4/5/18	26.86	480.59	17.28	481.43	19.65	479.43	16.95	478.75	
10	10/30/18 to 10/31/18	26.70	480.75	18.25	480.46	20.54	478.54	17.75	477.95	

NOTES:

btoc = below top of casing

msl = mean sea level

TABLE 2 Groundwater Sampling Summary CPS Energy - Calaveras Power Station Fly Ash Landfill

CCR Unit	Well ID	Well Function	Number of Samples	2016 - 2018 Sample Dates									Monitoring	
	weinid		Collected in 2016 - 2018	12/6/16 to 12/8/16	2/21/17 to 2/23/17	3/28/17 to 3/30/17	5/2/17 to 5/4/17	6/20/17 to 6/21/17	7/25/17 to 7/26/17	8/29/17 to 8/30/17	10/10/17 to 10/11/17	4/4/18 to 4/5/18	10/30/18 to 10/31/18	Program
	JKS-31	Downgradient Monitoring	10	Х	Х	Х	Х	Х	Х	Х	Х	х	Х	Detection
	JKS-33	Downgradient Monitoring	10	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Detection
Fly Ash Landfill	JKS-45	Upgradient Monitoring	10	х	х	х	х	Х	х	х	Х	х	Х	Detection
FIY ASIT LATION	JKS-46	Downgradient Monitoring	10	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Detection
	JKS-57	Upgradient Monitoring	10	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Detection
	JKS-60	Downgradient Monitoring	10	Х	Х	Х	Х	Х	X	x	Х	Х	Х	Detection

NOTES:

X = Indicates that a sample was collected.

]					JKS-45 Up	ogradient				
	Sample Date	12/6/16	2/23/17	3/28/17	5/3/17	6/20/17	7/25/17	8/29/17	10/10/17	4/4/18	10/30/18
	Task	Event 1 Dec 2016	Event 2 Feb 2017	Event 3 Mar 2017	Event 4 May 2017	Event 5 Jun 2017	Event 6 Jul 2017	Event 7 Aug 2017	Event 8 Oct 2017	Event 9 Apr 2018	Event 10 Oct 2018
Constituents	Unit										
Appendix III - Detection	Monitoring										
Boron	mg/L	1.65	1.51	2.27	1.11	2.03	1.91	2.02	2.21	2.28	3.24
Calcium	mg/L	144	122	184	105	101	103	120	130	128	161 D
Chloride	mg/L	196	187	181 J	160	152	0.803	345 JH	24.8	118	137
Fluoride	mg/L	< 0.200	0.207	0.334	0.337 JH	0.174	0.274 JH	< 0.200	0.131 JH	<0.0360	<0.0360
Sulfate	mg/L	623	639	661	613	602	2.95 JH	770 JH	120	662 D	707
pH - Field Collected	Std	5.41	5.17	3.98	5.62	5.13	5.66	5.82	5.60	5.59	5.70
Total dissolved solids	mg/L	1270	1300	1330	1350	1270	1250	1680 JH	1100	1190	741
Appendix IV - Assessme	ent Monitoring										
Antimony	mg/L	< 0.00200	0.000310	0.000400	< 0.0100	< 0.0100	< 0.00200	0.000348	0.000490	NR	NR
Arsenic	mg/L	0.000534	0.00216	0.00595	< 0.0100	< 0.0100	0.000346	0.00283	0.000618	NR	NR
Barium	mg/L	0.0185	0.0436	0.103	0.0128	0.0176	0.0114	0.0480	0.0142	NR	NR
Beryllium	mg/L	< 0.0400	0.000383	0.000921	< 0.0100	< 0.0100	0.000149	0.000408	0.000229	NR	NR
Cadmium	mg/L	< 0.00200	< 0.00200	0.000189	< 0.0100	< 0.0100	< 0.00200	< 0.00200	< 0.00200	NR	NR
Chromium	mg/L	0.00743	0.0152	0.0320	0.00403	< 0.0200	0.00313	0.0135	0.00272	NR	NR
Cobalt	mg/L	0.00506	0.00465	0.00828	0.00346	0.00351	0.00277	0.00376	0.00358	NR	NR
Fluoride	mg/L	< 0.200	0.207	0.334	0.337 JH	0.174	0.274 JH	< 0.200	0.131 JH	NR	NR
Lead	mg/L	0.000571	0.00419	0.0117	< 0.0100	< 0.0100	0.000479	0.00482	0.000968	NR	NR
Lithium	mg/L	0.0329	0.0601	< 0.100	0.0600	0.0639	0.0694	0.0935	0.0781	NR	NR
Mercury	mg/L	< 0.000200	0.0000320	< 0.000200	< 0.000200	0.0000300	< 0.000200	< 0.000200	< 0.000200	NR	NR
Molybdenum	mg/L	0.00105	0.00245	0.00372	< 0.0100	< 0.0100	< 0.00200	0.00115	0.000271	NR	NR
Selenium	mg/L	0.0147	0.0144	0.0174	0.0121	0.0123	0.00990	0.0136	0.0118	NR	NR
Thallium	mg/L	< 0.00200	< 0.00200	0.000460	< 0.0100	< 0.0100	< 0.00200	< 0.00200	< 0.00200	NR	NR
Radium-226	pCi/L	4.78 ± 0.890	4.29 ± 0.612	7.63 ± 0.795	3.29 ± 0.485	4.24 ± 0.671	4.34 ± 0.607	3.65 ± 0.553	5.07 ± 0.718	NR	NR
Radium-228	pCi/L	1.92 ± 1.19	4.59 ± 1.34	2.27 ± 1.19	1.42 ± 0.908	2.84 ± 1.15	1.83 ± 0.868	1.86 ± 0.827	1.66 ± 0.847	NR	NR

NOTES:

mg/L: Milligrams per Liter.

Std: Standard Units.

pCi/L: Picocuries per Liter.

--: Laboratory did not analyze sample for indicated constituent.

NR: Analysis of this constituent not required for detection monitoring.

<0.0360: Analyte not detected at laboratory reporting limit (Sample Detection Limit).

D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.

J: Analyte detected above method (sample) detection limit but below method quantitation limit.

	[JKS-57 Up	ogradient				
	Sample Date	12/7/16	2/22/17	3/28/17	5/2/17	6/20/17	7/25/17	8/29/17	10/10/17	4/4/18	10/30/18
	Task	Event 1 Dec 2016	Event 2 Feb 2017	Event 3 Mar 2017	Event 4 May 2017	Event 5 Jun 2017	Event 6 Jul 2017	Event 7 Aug 2017	Event 8 Oct 2017	Event 9 Apr 2018	Event 10 Oct 2018
Constituents	Unit										
Appendix III - Detection	Monitoring										
Boron	mg/L	3.19	3.24	3.17	2.67	3.09	3.08	2.98	3.48	4.49	2.81
Calcium	mg/L	349	362	413		290	327	337	393	409	401 D
Chloride	mg/L	70.6	76.2	89.6	130	158	311	12.5 JH	185	534 D	3770
Fluoride	mg/L	3.62	3.32	2.84	2.27	3.42	3.43	< 0.200	3.28	4.29	2.31
Sulfate	mg/L	2780	1980	2090	2470	3080	3410	450 JH	3610	4260 D	5000
pH - Field Collected	Std	6.73	6.08	5.13	6.63	6.37	6.72	6.60	6.70	6.63	6.35
Total dissolved solids	mg/L	4770	3780	3320	4060	5800	5920	850 JH	5850	7390	9750
Appendix IV - Assessme	ent Monitoring										
Antimony	mg/L	< 0.0100	< 0.00200	< 0.00200	< 0.00200	< 0.0100	< 0.00200	< 0.00200	< 0.00200	NR	NR
Arsenic	mg/L	0.00138	0.000630	0.000654	0.000561	< 0.0100	0.000480	0.000519	0.000486	NR	NR
Barium	mg/L	0.0311	0.0211	0.0208	0.0174	0.0164	0.0149	0.0128	0.0145	NR	NR
Beryllium	mg/L	< 0.0100	< 0.00200	0.000161	< 0.00200	< 0.0100	< 0.00200	< 0.00200	< 0.00200	NR	NR
Cadmium	mg/L	< 0.0100	< 0.00200	< 0.00200	< 0.00200	< 0.0100	< 0.00200	< 0.00200	< 0.00200	NR	NR
Chromium	mg/L	< 0.0200	0.000687	< 0.00400	< 0.00400	< 0.0200	0.000739	0.000816	0.00104	NR	NR
Cobalt	mg/L	0.000520	0.00232	0.000297	0.000449	0.000407	0.000748	0.000195	0.000322	NR	NR
Fluoride	mg/L	3.62	3.32	2.84	2.27	3.42	3.43	< 0.200	3.28	NR	NR
Lead	mg/L	< 0.0100	< 0.00200	< 0.00200	< 0.00200	< 0.0100	< 0.00200	0.000256	< 0.00200	NR	NR
Lithium	mg/L	0.545	0.287	< 0.100		0.533	0.649	0.671	0.733	NR	NR
Mercury	mg/L	< 0.000200	0.0000300	< 0.000200	0.0000580	< 0.000200	< 0.000200	< 0.000200	< 0.000200	NR	NR
Molybdenum	mg/L	< 0.0100	0.000385	0.000278	< 0.00200	< 0.0100	0.000329	0.000283	< 0.00200	NR	NR
Selenium	mg/L	0.00237	0.000664	0.000594	0.000561	< 0.0100	0.000612	0.000858	0.000697	NR	NR
Thallium	mg/L	< 0.0100	< 0.00200	< 0.00200	< 0.00200	< 0.0100	< 0.00200	< 0.00200	< 0.00200	NR	NR
Radium-226	pCi/L	0.592 ± 0.325	0.322 ± 0.157	0.519 ± 0.219	0.356 ± 0.176	< 0.273 ± 0.273	0.338 ± 0.221	0.255 ± 0.176	< 0.0986 ± 0.153	NR	NR
Radium-228	pCi/L	< 1.15 ± 0.895	2.31 ± 1.03	< 0.794 ± 0.818	2.86 ± 1.27	< 0.903 ± 0.843	< 0.786 ± 0.900	1.90 ± 0.894	1.73 ± 1.00	NR	NR

NOTES:

mg/L: Milligrams per Liter.

Std: Standard Units.

pCi/L: Picocuries per Liter.

--: Laboratory did not analyze sample for indicated constituent.

NR: Analysis of this constituent not required for detection monitoring.

<0.0360: Analyte not detected at laboratory reporting limit (Sample Detection Limit).

D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.

J: Analyte detected above method (sample) detection limit but below method quantitation limit.

	[JKS-31 Dov	vngradient				
	Sample Date	12/8/16	2/21/17	3/29/17	5/2/17	6/20/17	7/25/17	8/29/17	10/10/17	4/4/18	10/30/18
	Task	Event 1 Dec 2016	Event 2 Feb 2017	Event 3 Mar 2017	Event 4 May 2017	Event 5 Jun 2017	Event 6 Jul 2017	Event 7 Aug 2017	Event 8 Oct 2017	Event 9 Apr 2018	Event 10 Oct 2018
Constituents	Unit										
Appendix III - Detection	Monitoring										
Boron	mg/L	0.446	0.580	0.642	0.499	0.573	0.510	0.494	0.553	0.485	0.514
Calcium	mg/L	188	384	317		216	171	230	228	187	208 D
Chloride	mg/L	223	477	303	317	285	< 2.00	< 0.200	288	253 D	256
Fluoride	mg/L	0.801	0.186	0.548	0.865	0.661	0.979 JH	< 0.200	0.735 JH	0.839	0.694
Sulfate	mg/L	697	1130	768	875	782	1.17 JH	0.160 JH	803	771 D	774
pH - Field Collected	Std	3.94	4.04	6.34	4.29	3.84	5.14	3.99	3.98	3.74	3.07
Total dissolved solids	mg/L	1470	2290	2430	1850	1730	1500	< 25.0	1890	1420	1390
Appendix IV - Assessme	ent Monitoring										
Antimony	mg/L	< 0.0100	< 0.00200	< 0.00200	0.000301	< 0.0100	0.000527	< 0.00200	0.000559	NR	NR
Arsenic	mg/L	0.00151	0.0110	0.00834	0.00501	0.00363	0.00134	0.00556	0.00279	NR	NR
Barium	mg/L	0.0167	0.0141	0.0198	0.0136	0.0127	0.0229	0.0129	0.0122	NR	NR
Beryllium	mg/L	0.00793	0.00851	0.00885	0.00814	0.00865	0.00593	0.00827	0.00857	NR	NR
Cadmium	mg/L	< 0.0100	< 0.00200	< 0.00200	< 0.00200	< 0.0100	< 0.00200	< 0.00200	< 0.00200	NR	NR
Chromium	mg/L	0.0200	0.000663	< 0.00400	< 0.00400	< 0.0200	0.000890	0.000849	0.000760	NR	NR
Cobalt	mg/L	0.000440	0.0399	0.0623	0.0227	0.0173	0.0113	0.0302	0.0192	NR	NR
Fluoride	mg/L	0.801	0.186	0.548	0.865	0.661	0.979	< 0.200	0.735 JH	NR	NR
Lead	mg/L	< 0.0100	0.000415	< 0.00200	0.000344	< 0.0100	0.000348	0.00233	0.000580	NR	NR
Lithium	mg/L	0.533	0.510	< 0.100		0.572	0.484	0.615	0.590	NR	NR
Mercury	mg/L	< 0.000200	< 0.000200	< 0.000200	0.0000360	< 0.000200	< 0.000200	< 0.000200	< 0.000200	NR	NR
Molybdenum	mg/L	< 0.0100	< 0.00200	< 0.00200	< 0.00200	< 0.0100	< 0.00200	< 0.00200	< 0.00200	NR	NR
Selenium	mg/L	< 0.0100	0.00163	< 0.00200	0.00125	< 0.0100	0.00162	0.00177	0.00155	NR	NR
Thallium	mg/L	< 0.0100	< 0.00200	< 0.00200	< 0.00200	< 0.0100	< 0.00200	< 0.00200	< 0.00200	NR	NR
Radium-226	pCi/L	2.46 ± 0.574	2.60 ± 0.473	1.44 ± 0.425	1.40 ± 0.338	1.40 ± 0.403	1.28 ± 0.341	1.36 ± 0.399	1.01 ± 0.323	NR	NR
Radium-228	pCi/L	7.35 ± 1.59	8.16 ± 2.15	5.33 ± 1.47	5.85 ± 1.79	4.63 ± 1.23	4.44 ± 1.37	3.58 ± 1.22	4.96 ± 1.43	NR	NR

NOTES:

mg/L: Milligrams per Liter.

Std: Standard Units.

pCi/L: Picocuries per Liter.

--: Laboratory did not analyze sample for indicated constituent.

NR: Analysis of this constituent not required for detection monitoring.

<0.0360: Analyte not detected at laboratory reporting limit (Sample Detection Limit).

D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.

J: Analyte detected above method (sample) detection limit but below method quantitation limit.

	[JKS-33 Dov	vngradient				
	Sample Date	12/7/16	2/22/17	3/28/17	5/2/17	6/20/17	7/26/17	8/29/17	10/10/17	4/5/18	10/30/18
	Task	Event 1 Dec 2016	Event 2 Feb 2017	Event 3 Mar 2017	Event 4 May 2017	Event 5 Jun 2017	Event 6 Jul 2017	Event 7 Aug 2017	Event 8 Oct 2017	Event 9 Apr 2018	Event 10 Oct 2018
Constituents	Unit										
Appendix III - Detection	Monitoring										
Boron	mg/L	0.940	1.02	1.05	1.01	1.14	1.01	1.03	1.11	0.99	0.791
Calcium	mg/L	564	600	553		563	558	567	531	552	385 D
Chloride	mg/L	735	679	731	690	692	693	125 JH	666	786	758
Fluoride	mg/L	1.86	1.08	1.77	1.39	1.81	1.34	< 1.00	1.69	1.85	1.21
Sulfate	mg/L	1850	1670	1780	1710	1690	1710	3170	1640	1810	1740
pH - Field Collected	Std	6.51	5.90	4.91	6.52	6.15	5.71	6.49	6.49	6.33	6.26
Total dissolved solids	mg/L	4000	3990	4310	4410	4240	4070	3580	4320	3970	3320
Appendix IV - Assessme	ent Monitoring										
Antimony	mg/L	< 0.0100	< 0.00200	< 0.0100	< 0.00200	< 0.0100	< 0.00200	< 0.00200	< 0.00200	NR	NR
Arsenic	mg/L	< 0.0100	< 0.00200	< 0.0100	0.000259	< 0.0100	0.000279	0.000316	< 0.00200	NR	NR
Barium	mg/L	0.0326	0.0318	0.0297	0.0282	0.0821	0.0274	0.0263	0.0264	NR	NR
Beryllium	mg/L	< 0.0100	< 0.00200	0.000709	< 0.00200	< 0.0100	< 0.00200	< 0.00200	< 0.00200	NR	NR
Cadmium	mg/L	< 0.0100	< 0.00200	< 0.0100	< 0.00200	< 0.0100	< 0.00200	< 0.00200	< 0.00200	NR	NR
Chromium	mg/L	< 0.0200	0.000611	< 0.0200	< 0.00400	< 0.0200	< 0.00400	0.00113	0.00108	NR	NR
Cobalt	mg/L	0.000690	0.000433	0.000487	0.000435	0.00627	0.000731	0.000902	0.000554	NR	NR
Fluoride	mg/L	1.86	1.08	1.77	1.39	1.81	1.34	< 1.00	1.69	NR	NR
Lead	mg/L	< 0.0100	< 0.00200	< 0.0100	< 0.00200	< 0.0100	< 0.00200	0.000157	< 0.00200	NR	NR
Lithium	mg/L	< 0.0200	< 0.0200	< 0.100		0.194	0.181	0.255	0.176	NR	NR
Mercury	mg/L	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	NR	NR
Molybdenum	mg/L	< 0.0100	< 0.00200	< 0.0100	< 0.00200	< 0.0100	< 0.00200	< 0.00200	< 0.00200	NR	NR
Selenium	mg/L	0.0314	0.0356	0.0389	0.0368	0.0474	0.0495	0.0546	0.0342	NR	NR
Thallium	mg/L	< 0.0100	< 0.00200	< 0.0100	< 0.00200	< 0.0100	< 0.00200	< 0.00200	< 0.00200	NR	NR
Radium-226	pCi/L	2.04 ± 0.439	1.14 ± 0.328	2.36 ± 0.522	1.81 ± 0.365	1.73 ± 0.428	1.55 ± 0.422	1.37 ± 0.394	2.23 ± 0.491	NR	NR
Radium-228	pCi/L	2.95 ± 1.16	3.52 ± 1.07	4.69 ± 1.33	3.24 ± 1.26	1.73 ± 0.902	4.11 ± 1.19	1.98 ± 1.01	2.99 ± 1.26	NR	NR

NOTES:

mg/L: Milligrams per Liter.

Std: Standard Units.

pCi/L: Picocuries per Liter.

--: Laboratory did not analyze sample for indicated constituent.

NR: Analysis of this constituent not required for detection monitoring.

<0.0360: Analyte not detected at laboratory reporting limit (Sample Detection Limit).

D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.

J: Analyte detected above method (sample) detection limit but below method quantitation limit.

	[JKS-46 Dov	vngradient				
	Sample Date	12/6/16	2/22/17	3/28/17	5/3/17	6/20/17	7/25/17	8/29/17	10/10/17	4/4/18	10/30/18
	Task	Event 1 Dec 2016	Event 2 Feb 2017	Event 3 Mar 2017	Event 4 May 2017	Event 5 Jun 2017	Event 6 Jul 2017	Event 7 Aug 2017	Event 8 Oct 2017	Event 9 Apr 2018	Event 10 Oct 2018
Constituents	Unit										
Appendix III - Detection	Monitoring										
Boron	mg/L	0.902	0.852	0.645	0.799	0.920	0.816	0.789	1.01	0.828	0.702
Calcium	mg/L	120	133	145	115	126	117	137	148	140	126 D
Chloride	mg/L	11.6	11.8	12.2	10.5	12.6	11.9	327 JH	11.7	11.6	11.6
Fluoride	mg/L	1.51	1.38	1.11	1.59	2.25	2.34	1.40 J	1.83	2.16	1.68
Sulfate	mg/L	700	692	608	677	< 0.200	780	450 JH	800	864 D	855
pH - Field Collected	Std	3.60	3.55	2.10	3.57	2.96	3.54	3.21	3.20	3.15	3.00
Total dissolved solids	mg/L	1160	1110	926	1030	1270	1320	1170 JH	1390	1300	1220
Appendix IV - Assessme	ent Monitoring										
Antimony	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.0100	< 0.0100	< 0.00200	< 0.00200	< 0.00200	NR	NR
Arsenic	mg/L	0.00190	0.00227	0.00149	0.00196	0.00277	0.00253	0.00295	0.00299	NR	NR
Barium	mg/L	0.0429	0.0356	0.0319	0.0307	0.0364	0.0317	0.0323	0.0334	NR	NR
Beryllium	mg/L	0.00381	0.00362	0.00340	0.00399	0.00459	0.00417	0.00462	0.00486	NR	NR
Cadmium	mg/L	0.00110	0.000988	0.00123	0.00120	0.00101	0.00134	0.00141	0.00136	NR	NR
Chromium	mg/L	0.000942	0.00151	0.00104	< 0.0200	< 0.0200	0.00156	0.00204	0.00202	NR	NR
Cobalt	mg/L	0.0303	0.0324	0.0329	0.0367	0.0387	0.0387	0.0412	0.0425	NR	NR
Fluoride	mg/L	1.51	1.38	1.11	1.59	2.25	2.34	1.40 J	1.83	NR	NR
Lead	mg/L	0.0162	0.0134	0.0111	0.0144	0.0192	0.0201	0.0236	0.0271	NR	NR
Lithium	mg/L	0.0646	< 0.0200	< 0.100	0.0673	0.0749	0.0799	0.107	0.0896	NR	NR
Mercury	mg/L	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	NR	NR
Molybdenum	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.0100	< 0.0100	< 0.00200	< 0.00200	< 0.00200	NR	NR
Selenium	mg/L	0.0255	0.0266	0.0215	0.0247	0.0296	0.0266	0.0298	0.0290	NR	NR
Thallium	mg/L	0.00293	0.00292	0.00244	0.00263	0.00314	0.00300	0.00335	0.00358	NR	NR
Radium-226	pCi/L	3.16 ± 0.701	1.69 ± 0.387	1.80 ± 0.448	1.20 ± 0.315	1.82 ± 0.420	1.40 ± 0.353	1.52 ± 0.375	1.99 ± 0.459	NR	NR
Radium-228	pCi/L	4.98 ± 1.41	< 2.17 ± 1.48	2.96 ± 1.24	1.98 ± 0.957	4.39 ± 1.13	2.80 ± 1.05	2.28 ± 1.13	3.82 ± 1.15	NR	NR

NOTES:

mg/L: Milligrams per Liter.

Std: Standard Units.

pCi/L: Picocuries per Liter.

--: Laboratory did not analyze sample for indicated constituent.

NR: Analysis of this constituent not required for detection monitoring.

<0.0360: Analyte not detected at laboratory reporting limit (Sample Detection Limit).

D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.

J: Analyte detected above method (sample) detection limit but below method quantitation limit.

	[JKS-60 Dov	vngradient				
	Sample Date	12/7/16	2/22/17	3/28/17	5/2/17	6/20/17	7/25/17	8/29/17	10/10/17	4/4/18	10/30/18
	Task	Event 1 Dec 2016	Event 2 Feb 2017	Event 3 Mar 2017	Event 4 May 2017	Event 5 Jun 2017	Event 6 Jul 2017	Event 7 Aug 2017	Event 8 Oct 2017	Event 9 Apr 2018	Event 10 Oct 2018
Constituents	Unit										
Appendix III - Detection	Monitoring										
Boron	mg/L	0.655	0.504	0.449	0.456	0.442	0.394	0.436	0.479	0.399	0.334
Calcium	mg/L	433	375	290		379	336	350	383	363	382 D
Chloride	mg/L	411	311	311	285	300	319	287 JH	352	366 D	202
Fluoride	mg/L	< 0.200	0.319	0.324	0.421	0.306	0.338 JH	< 0.200	0.284 JH	0.220 J	0.239 J
Sulfate	mg/L	1480	999	1010	976	1020	818	760 JH	759	801 D	906
pH - Field Collected	Std	5.82	5.38	4.21	5.75	6.07	6.44	5.93	5.97	6.09	6.42
Total dissolved solids	mg/L	2790	2340	2020	2110	2510	2120	1450 JH	2300	1860	1910
Appendix IV - Assessme	ent Monitoring										
Antimony	mg/L	< 0.0100	< 0.00200	< 0.00200	< 0.00200	< 0.0100	< 0.00200	< 0.00200	< 0.00200	NR	NR
Arsenic	mg/L	< 0.0100	0.000861	0.000592	0.000366	< 0.0100	0.000367	0.000381	0.000266	NR	NR
Barium	mg/L	0.0715	0.0491	0.0465	0.0450	0.0469	0.0454	0.0490	0.0503	NR	NR
Beryllium	mg/L	< 0.0100	< 0.00200	< 0.00200	< 0.00200	< 0.0100	< 0.00200	< 0.00200	< 0.00200	NR	NR
Cadmium	mg/L	0.000774	0.000778	0.000786	0.000695	< 0.0100	0.000359	0.000608	0.000699	NR	NR
Chromium	mg/L	< 0.0200	0.000743	< 0.00400	< 0.00400	< 0.0200	0.000690	0.00204	0.00100	NR	NR
Cobalt	mg/L	0.115	0.0542	0.0423	0.0389	0.0210	0.00896	0.0166	0.0183	NR	NR
Fluoride	mg/L	< 0.200	0.319	0.324	0.421	0.306	0.338 JH	< 0.200	0.284 JH	NR	NR
Lead	mg/L	< 0.0100	< 0.00200	< 0.00200	< 0.00200	< 0.0100	< 0.00200	< 0.00200	0.000216	NR	NR
Lithium	mg/L	< 0.0200	< 0.0200	< 0.100		0.0305	0.0179	0.0635	0.0314	NR	NR
Mercury	mg/L	< 0.000200	< 0.000200	< 0.000200	0.0000370	< 0.000200	< 0.000200	< 0.000200	< 0.000200	NR	NR
Molybdenum	mg/L	< 0.0100	0.000726	0.000622	0.000715	0.00148	0.00162	0.00124	0.00103	NR	NR
Selenium	mg/L	< 0.0100	0.00168	0.00132	0.00981	0.0390	0.0244	0.00761	0.00745	NR	NR
Thallium	mg/L	< 0.0100	0.000425	0.000412	0.000403	< 0.0100	< 0.00200	0.000372	0.000387	NR	NR
Radium-226	pCi/L	3.01 ± 0.578	2.29 ± 0.421	2.74 ± 0.572	1.71 ± 0.378	0.914 ± 0.341	1.57 ± 0.381	1.34 ± 0.378	4.61 ± 0.650	NR	NR
Radium-228	pCi/L	2.57 ± 1.15	2.62 ± 1.04	< 0.838 ± 0.826	< 0.269 ± 0.713	2.24 ± 1.02	< 0.701 ± 0.850	1.72 ± 0.940	2.48 ± 1.60	NR	NR

NOTES:

mg/L: Milligrams per Liter.

Std: Standard Units.

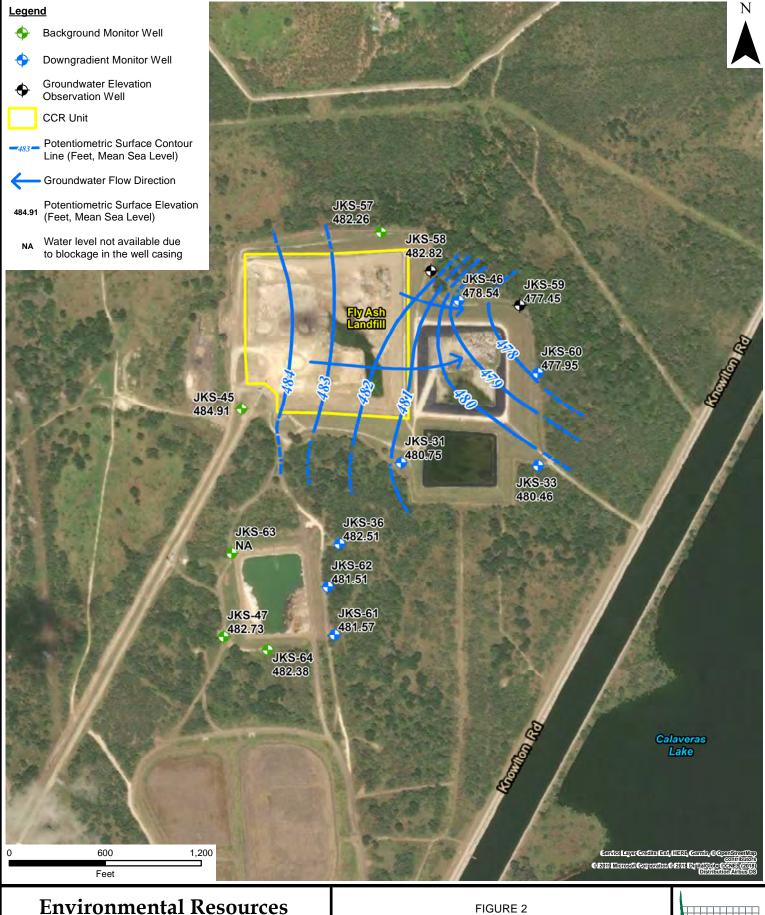
pCi/L: Picocuries per Liter.

--: Laboratory did not analyze sample for indicated constituent.

NR: Analysis of this constituent not required for detection monitoring.

<0.0360: Analyte not detected at laboratory reporting limit (Sample Detection Limit).

D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.


J: Analyte detected above method (sample) detection limit but below method quantitation limit.

Figures

DESIGN: NH DRAWN: EFC CHKD.: WZ DATE: 1/8/2018 SCALE: AS SHOWN REVISION: 0 P:Projects/0337367 CPS Energy CCR GW Investigation.WZIEight Background Sampling Events/GISIMXDI/2017_CAR 0337367_CPSCalv_WellsLocs.mxd San Antonio, Texas

Environmental Resources Management

DESIGN:	NH	DRAWN:	EFC	CHKD.:	WZ	
DATE:	1/14/2019	SCALE:	AS SHOWN	REVISION:	1	
	37367 CPS Energy CCR SCaly, pmanN, ElyAshI Fil		ion.WZ\Sampling Events\20	16-17\GIS\MXD\201	8/	

FIGURE 2 POTENTIOMETRIC SURFACE MAP -OCTOBER 2018 Fly Ash Landfill CCR Unit CPS Energy - Calaveras Power Station San Antonio, Texas

Laboratory Data Packages *Appendix A*

(Data Packages Available Upon Request)

Statistical Analysis Tables and Figures

Appendix B

APPENDIX B - TABLE 1 Kruskal-Wallis Test Comparisons of Upgradient Wells Calaveras Power Station Fly Ash Landfill

		Num	Percent		KW			
Analyte	Ν	Detects	Detect	DF	Statistic	p-value	Conclusion	UPL Type
Boron	20	20	1	1	10.3	0.00131	Significant Difference	Intrawell
Calcium	19	19	1	1	13.5	<0.001	Significant Difference	Intrawell
Chloride	20	20	1	1	0.00571	0.94	No Significant Difference	Interwell
Fluoride	20	15	0.75	1	10.9	<0.001	Significant Difference	Intrawell
pН	20	20	1	1	9.86	0.00169	Significant Difference	Intrawell
Sulfate	20	20	1	1	10.1	0.0015	Significant Difference	Intrawell
TDS	20	20	1	1	9.61	0.00193	Significant Difference	Intrawell

NOTES:

Non-detects were substituted with a value of half the detection limit for calculations

N: number of data points

DF: degrees of freedom

statistic: Kruskal Wallis test statistic

p-value: P-values below 0.05 indicate that the median concentrations in the upgradient wells are significantly different from each other and the upgradient wells should not be pooled.

p-value: P-values equal or above 0.05 indicate that the median concentrations in the upgradient wells are not significantly different from each other and the upgradient wells can be pooled.

APPENDIX B - TABLE 2 Descriptive Statistics for Upgradient Wells Calaveras Power Station Fly Ash Landfill

				Num	Percent			Min			Max			
Analyte	Well	Units	Ν	Detects	Detect	Min ND	Max ND	Detect	Median	Mean	Detect	SD	CV	Distribution
Boron	JKS-45	mg/L	10	10	1			1.11	2.02	2.02	3.24	0.567	0.2801997	Normal
Boron	JKS-57	mg/L	10	10	1			2.67	3.13	3.22	4.49	0.5	0.155245	Lognormal
Calcium	JKS-45	mg/L	10	10	1			101	125	130	184	26.7	0.2060149	Normal
Calcium	JKS-57	mg/L	9	9	1			290	362	365	413	42.5	0.1165247	Normal
Chloride	Pooled	mg/L	20	20	1			0.803	155	342	3770	816	2.3871949	NDD
Fluoride	JKS-45	mg/L	10	6	0.6	0.018	0.048	0.131	0.152	0.156	0.337	0.129	0.8300624	Normal
Fluoride	JKS-57	mg/L	10	9	0.9	0.048	0.048	2.27	3.3	2.88	4.29	1.16	0.4039079	NDD
рН	JKS-45	SU	10	10	1			3.98	5.6	5.37	5.82	0.537	0.0999455	NDD
рН	JKS-57	SU	10	10	1			5.13	6.62	6.39	6.73	0.491	0.0767148	NDD
Sulfate	JKS-45	mg/L	10	10	1			2.95	631	540	770	258	0.4785487	NDD
Sulfate	JKS-57	mg/L	10	10	1			450	2930	2910	5000	1280	0.4396063	Normal
TDS	JKS-45	mg/L	10	10	1			741	1270	1250	1680	233	0.1869022	Normal
TDS	JKS-57	mg/L	10	10	1			850	5280	5150	9750	2420	0.4700998	Normal

NOTES:

Non-detects were substituted with a value of half the detection limit for calculations

Well = Pooled, indicates that the summary statistics were produced for the pooled upgradient wells based on the Kruskal-Wallis test (Table 1).

SU: Standard units

N: number of data points

ND: Non-detect

SD: Standard Deviation

CV: Coefficient of Variation (standard deviation divided by the mean)

APPENDIX B - TABLE 3 Potential Outliers in Upgradient Wells Calaveras Power Station Fly Ash Landfill

						Concentr			Statistical	Vieuel	Normal	Log Statistical	Log Visual		Statistical		Final Outlier
Well	Sample	Date	Analyte	Units	Detect	Concentr ation	UPL type	Distribution		Visual Outlier	Outlier	Outlier	Outlier	Outlier	and Visual Outlier	Notes	Determination
JKS-45	JKS 45603951-016	10/30/2018	Boron	mg/L	TRUE	3.24	Intrawell	Normal	Х	Х	Х				0		
JKS-57	JKS 57565194-013	10/10/2017	Boron	mg/L	TRUE	3.48	Intrawell	Lognormal		Х			Х				
JKS-57	JKS 57581381-013	4/4/2018	Boron	mg/L	TRUE	4.49	Intrawell	Lognormal	Х	Х	Х	Х	Х	Х	0		
JKS-45	JKS-45561478-015	8/29/2017	Chloride	mg/L	TRUE	345	Interwell	NDD		Х							
JKS-57	JKS 57558406-015	7/25/2017	Chloride	mg/L	TRUE	311	Interwell	NDD		Х							
JKS-57	JKS 57581381-013	4/4/2018	Chloride	mg/L	TRUE	534	Interwell	NDD		Х			Х				
JKS-57	JKS 57603951-015	10/30/2018	Chloride	mg/L	TRUE	3770	Interwell	NDD	Х	Х	Х	Х	Х	Х	Х		
JKS-45	JKS-45-WG-20170328	3/28/2017	pН	SU	TRUE	3.98	Intrawell	NDD	Х	Х	Х	Х	Х	Х	0		
JKS-57	JKS-57-WG-20170328	3/28/2017	pН	SU	TRUE	5.13	Intrawell	NDD	Х	Х	Х	Х	Х	Х	0		
JKS-45	JKS-45561478-015	8/29/2017	Sulfate	mg/L	TRUE	770	Intrawell	NDD		Х			Х				
JKS-45	JKS-45561478-015	8/29/2017	TDS	mg/L	TRUE	1680	Intrawell	Normal	Х	Х	Х	Х	Х	Х	0		
JKS-57	JKS 57603951-015	10/30/2018	TDS	mg/L	TRUE	9750	Intrawell	Normal		Х							

NOTES:

NDD: No Discernible Distribution

SU: Standard units

Outer tests were performed on detected data only.

Statistical outliers were determined using a Dixon's test for N < 25 and with Rosner's test for N > 25.

Visual outliers were identified if they fall above the confidence envelope on the QQ plot.

Data points were considered potential outliers if they were both statistical and visual outliers.

NDD wells had data points considered as potential outliers if they were either a normal or lognormal outlier.

[Blank] data distribution indicates that the well data did not have enough detected data points for outlier analysis. Lognormally distributed data was first log-transformed before visual and statistical outlier tests were performed.

Normal data distribution indicates that the well data was directly used for statistical and visual outlier tests.

NDD indicates that both the untransformed and transformed data were examined with statistical and visual outlier tests.

'0' indicates that the data point was a statistical and visual outlier but was retained after review by the hydrogeologist.

APPENDIX B - TABLE 4 Mann Kendall Test for Trends in Upgradient Wells Calaveras Power Station Fly Ash Landfill

				Num	Percent			
Analyte	UPL Type	Well	Ν	Detects	Detect	p-value	tau	Conclusion
Boron	Intrawell	JKS-45	10	10	1	0.0286	0.556	Increasing Trend
Boron	Intrawell	JKS-57	10	10	1	0.727	-0.111	Stable, No Trend
Calcium	Intrawell	JKS-45	10	10	1	0.862	0.0667	Stable, No Trend
Calcium	Intrawell	JKS-57	9	9	1	0.358	0.278	Stable, No Trend
Chloride	Interwell	JKS-45, JKS-57	19	19	1	0.752	0.0536	Stable, No Trend
Fluoride	Intrawell	JKS-45	10	6	0.6			Insufficient Data
Fluoride	Intrawell	JKS-57	10	9	0.9	0.727	-0.111	Stable, No Trend
рН	Intrawell	JKS-45	10	10	1	0.156	0.378	Stable, No Trend
рН	Intrawell	JKS-57	10	10	1	1	0	Stable, No Trend
Sulfate	Intrawell	JKS-45	10	10	1	0.727	0.111	Stable, No Trend
Sulfate	Intrawell	JKS-57	10	10	1	0.0167	0.6	Increasing Trend
TDS	Intrawell	JKS-45	10	10	1	0.106	-0.405	Stable, No Trend
TDS	Intrawell	JKS-57	10	10	1	0.0466	0.511	Increasing Trend

NOTES:

Non-detects were substituted with a value of zero for trend calculations

N: number of data points

tau: Kendall's tau statistic

p-value: A two-sided p-value describing the probability of the H0 being true (a=0.05)

Trend tests were performed on all upgradient data, only if the dataset met the minimum data quality criteria (ERM 2017).

APPENDIX B - TABLE 5 Calculated UPLs for Upgradient Datasets Calaveras Power Station Fly Ash Landfill

					Num	Percent				ND					Final	
Analyte	UPL Type	Trend	Well	Ν	Detects	Detects	LPL	UPL	Units	Adjustment	Transformation	Alpha	Method	Final LPL	UPL	Notes
Boron	Intrawell	Increasing Trend	JKS-45	10	10	1		3.59	mg/L	None	No	0.00438	NP Detrended UPL			
Boron	Intrawell	Stable, No Trend	JKS-57	10	10	1		4.22	mg/L	None	No	0.00438	Param Intra 1 of 2		Х	
Calcium	Intrawell	Stable, No Trend	JKS-45	10	10	1		183	mg/L	None	No	0.00438	Param Intra 1 of 2			
Calcium	Intrawell	Stable, No Trend	JKS-57	9	9	1		453	mg/L	None	No	0.00438	Param Intra 1 of 2		Х	
Chloride	Interwell	Stable, No Trend	JKS-45, JKS-57	19	19	1		380	mg/L	None	No	0.00438	Param Inter 1 of 2		Х	
													<8 Detects, Max Detect			
Fluoride	Intrawell	Insufficient Data	JKS-45	10	6	0.6		0.337	mg/L				used			
Fluoride	Intrawell	Stable, No Trend	JKS-57	10	9	0.9		5.19	mg/L	None	No	0.00438	Param Intra 1 of 2		Х	
pН	Intrawell	Stable, No Trend	JKS-45	10	10	1	3.98	5.82	SU	None	No	0.0303	NP Intra (normality) 1 of 2	Х		
pН	Intrawell	Stable, No Trend	JKS-57	10	10	1	5.13	6.73	SU	None	No	0.0303	NP Intra (normality) 1 of 2		Х	
Sulfate	Intrawell	Stable, No Trend	JKS-45	10	10	1		770	mg/L	None	No	0.0152	NP Intra (normality) 1 of 2			
Sulfate	Intrawell	Increasing Trend	JKS-57	10	10	1		6370	mg/L	None	No	0.00438	NP Detrended UPL		Х	
TDS	Intrawell	Stable, No Trend	JKS-45	10	10	1		1720	mg/L	None	No	0.00438	Param Intra 1 of 2			
TDS	Intrawell	Increasing Trend	JKS-57	10	10	1		11200	mg/L	None	No	0.00438	NP Detrended UPL		Х	

NOTES:

Non-detects were substituted with a value of half the detection limit for calculations

UPL: upper prediction limit

LPL: Lower prediction limit. These were only calculated for pH

UPLs were constructed with a site wide false positive rate of 0.1 and a 1 of 2 retesting.

UPLs were calculated using Sanitas Software.

SU: Standard units

NP: non parametric

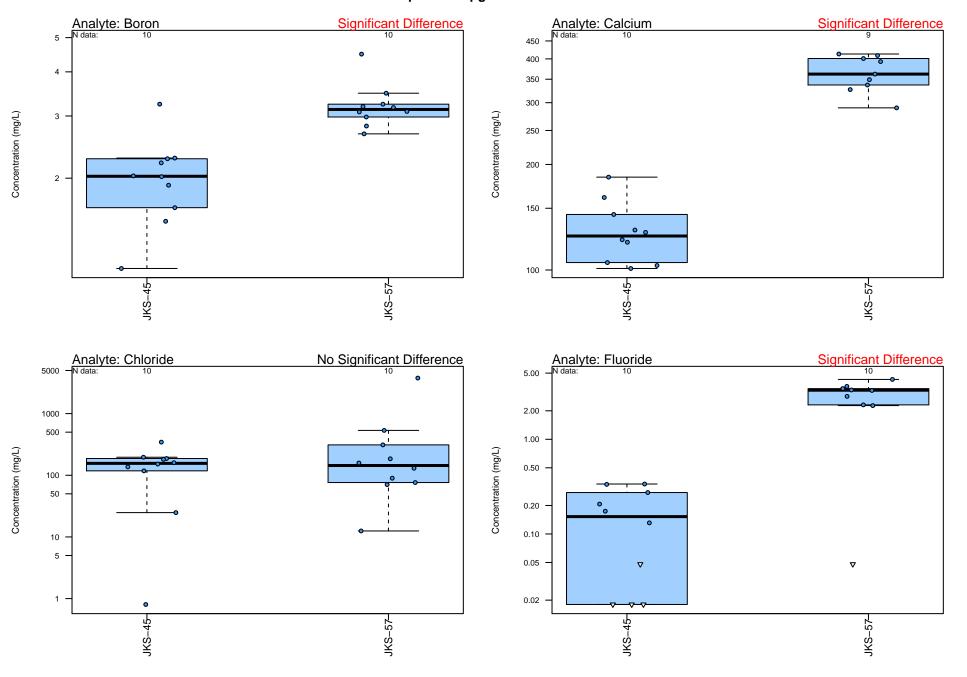
RL: Reporting Limit

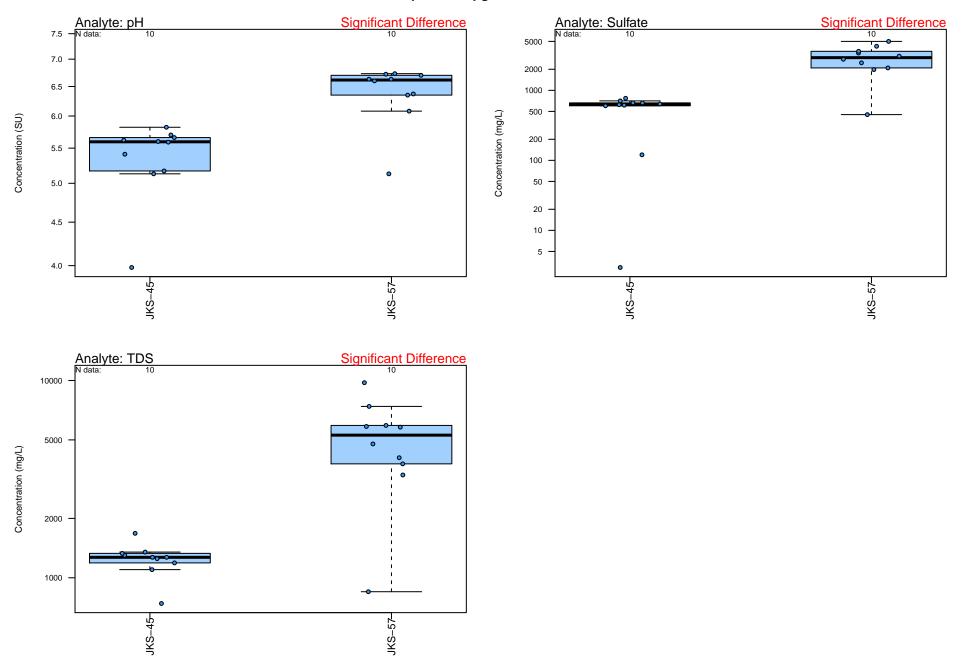
Intra: indicates an intrawell UPL was used

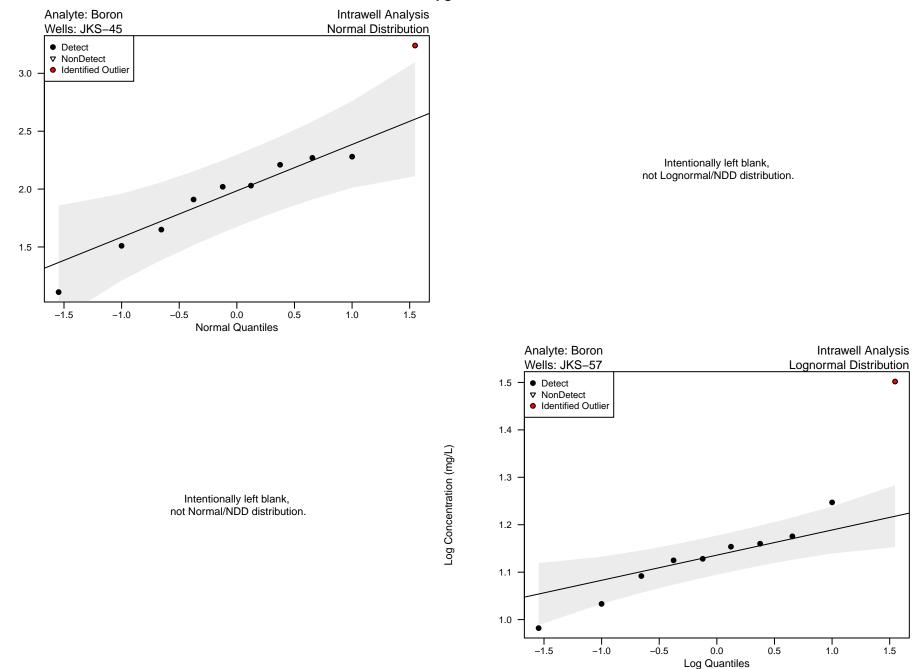
Inter: indicates an interwell UPL was used

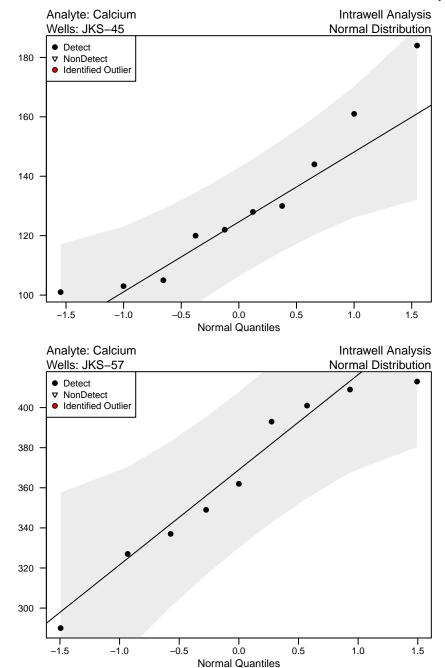
In the case where multiple UPLs were calculated for an analyte, the maximum UPL was used as the final UPL.

In the case where multiple LPLs were calculated for an pH the minimum LPL was used as the final LPL.

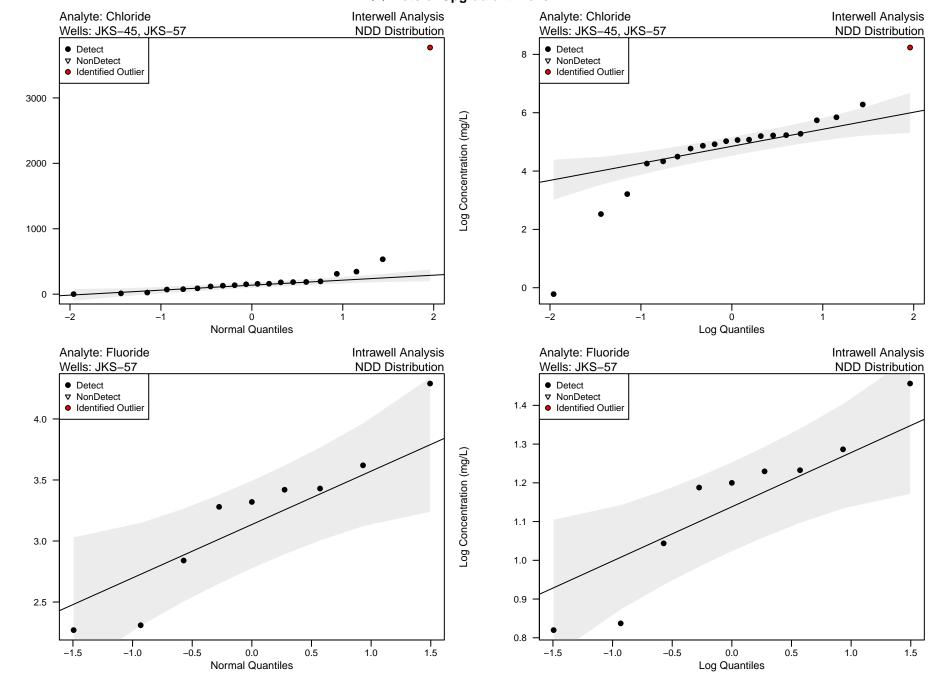

APPENDIX B - TABLE 6 Comparisons of Downgradient Wells to UPLs Calaveras Power Station Fly Ash Landfill

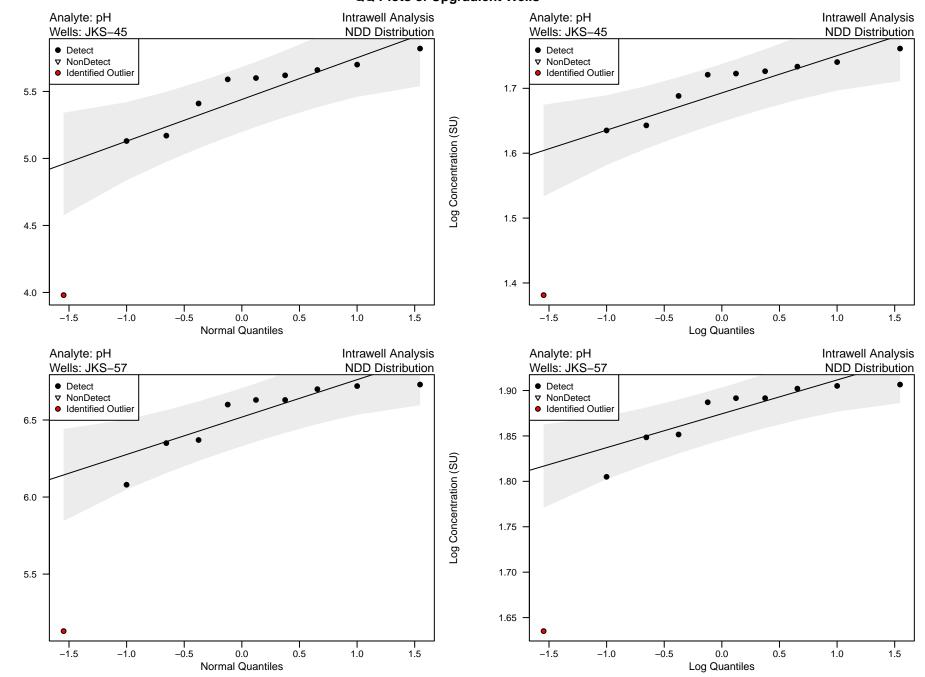

										Mann Kendall	Mann Kendall
Analyte	Well	LPL	UPL	Units	Recent Date	Observation	Qualifier	Obs > UPL	Notes	p-value	tau
Boron	JKS-31		4.22	mg/L	10/30/2018	0.514					
Boron	JKS-33		4.22	mg/L	10/30/2018	0.791					
Boron	JKS-46		4.22	mg/L	10/30/2018	0.702					
Boron	JKS-60		4.22	mg/L	10/30/2018	0.334					
Calcium	JKS-31		453	mg/L	10/30/2018	208					
Calcium	JKS-33		453	mg/L	10/30/2018	385					
Calcium	JKS-46		453	mg/L	10/30/2018	126					
Calcium	JKS-60		453	mg/L	10/30/2018	382					
Chloride	JKS-31		380	mg/L	10/30/2018	256					
									Trend Test: Stable,		
Chloride	JKS-33		380	mg/L	10/30/2018	758		Х	No Trend	0.862	0.0667
Chloride	JKS-46		380	mg/L	10/30/2018	11.6					
Chloride	JKS-60		380	mg/L	10/30/2018	202					
Fluoride	JKS-31		5.19	mg/L	10/30/2018	0.694					
Fluoride	JKS-33		5.19	mg/L	10/30/2018	1.21					
Fluoride	JKS-46		5.19	mg/L	10/30/2018	1.68					
Fluoride	JKS-60		5.19	mg/L	10/30/2018	0.239					
									Trend Test: Stable,		
pН	JKS-31	3.98	6.73	SU	10/30/2018	3.07		Х	No Trend	0.108	-0.422
рН	JKS-33	3.98	6.73	SU	10/30/2018	6.26					
									Trend Test: Stable,		
pН	JKS-46	3.98	6.73	SU	10/30/2018	3		Х	No Trend	0.108	-0.422
рН	JKS-60	3.98	6.73	SU	10/30/2018	6.42					
Sulfate	JKS-31		6370	mg/L	10/30/2018	774					
Sulfate	JKS-33		6370	mg/L	10/30/2018	1740					
Sulfate	JKS-46		6370	mg/L	10/30/2018	855					
Sulfate	JKS-60		6370	mg/L	10/30/2018	906					
TDS	JKS-31		11200	mg/L	10/30/2018	1390					
TDS	JKS-33		11200	mg/L	10/30/2018	3320					
TDS	JKS-46		11200	mg/L	10/30/2018	1220					
TDS	JKS-60		11200	mg/L	10/30/2018	1910					

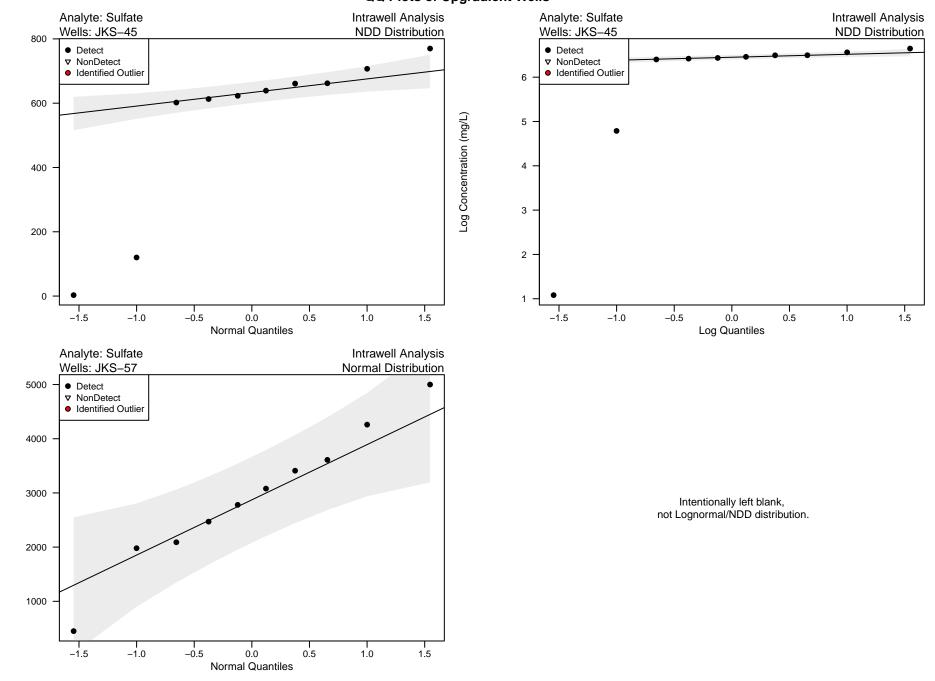

NOTES:


Non-detects were substituted with a value of zero for trend calculations UPL: Upper Prediction Limit ND: Not detected SU: Standard units tau: Kendall's tau statistic p-value: A two-sided p-value describing the probability of the H0 being true (a=0.05) Exceed 'X' indicates that the most recent observed value is higher than the UPL (or out of range of the LPL and UPL in the case of pH.) Exceed 'X0' indicates that the two most recent values are higher than the UPL, but the upgradient well is 100% ND.

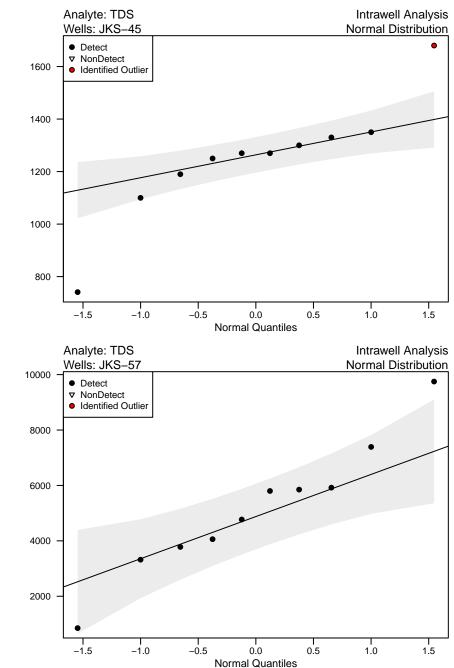
Exceed '0' indicated that the most recent observed value is higher than the UPL, but is not scored as an SSI due to Double Quantification Rule (ERM 2017).

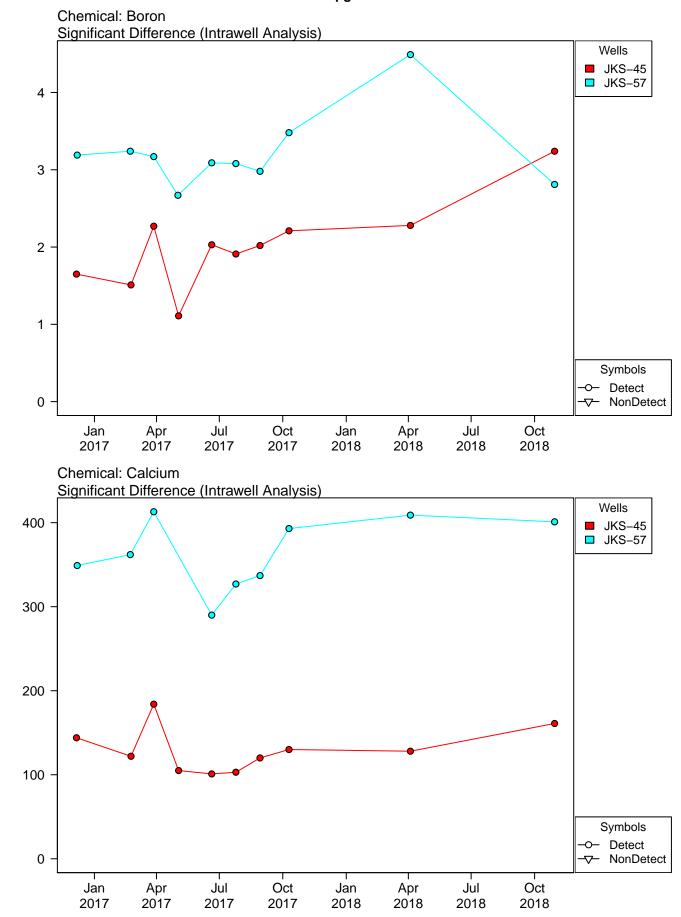




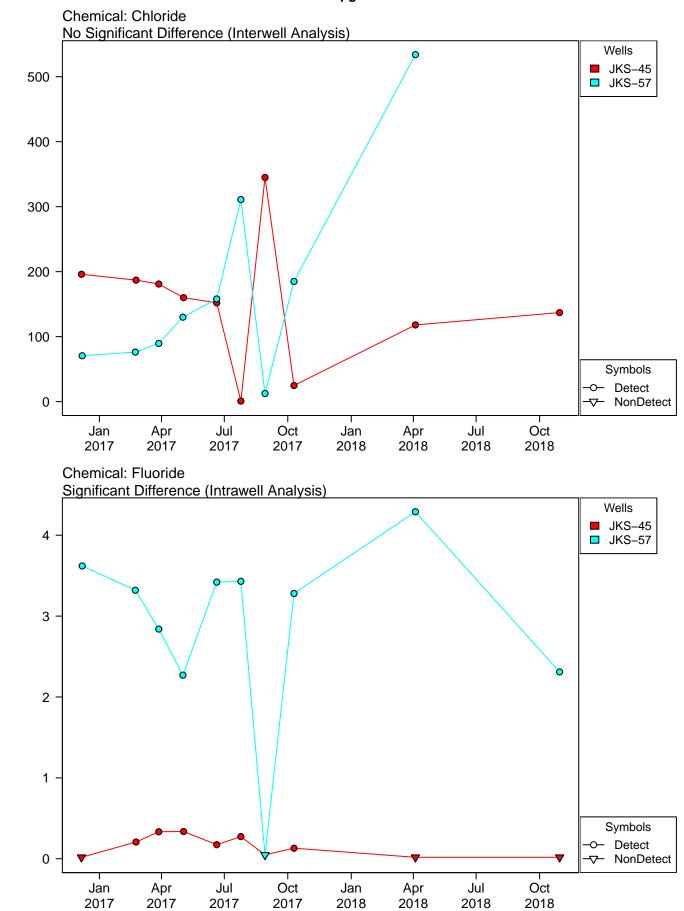


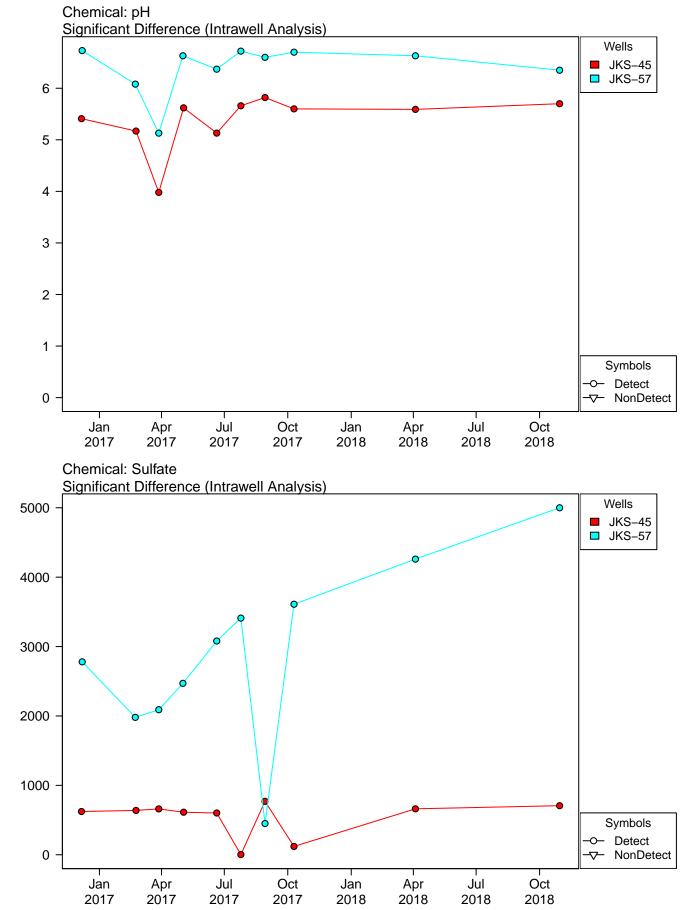
Intentionally left blank, not Lognormal/NDD distribution.


Intentionally left blank, not Lognormal/NDD distribution.

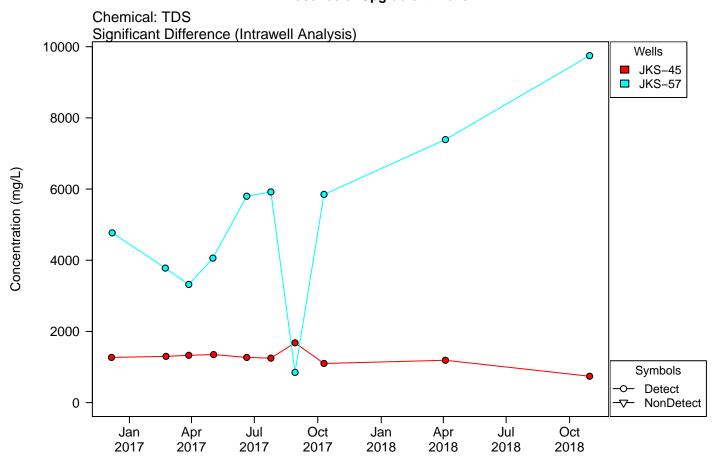


Appendix B – Figure 2 Unit: Fly Ash Landfill QQ Plots of Upgradient Wells

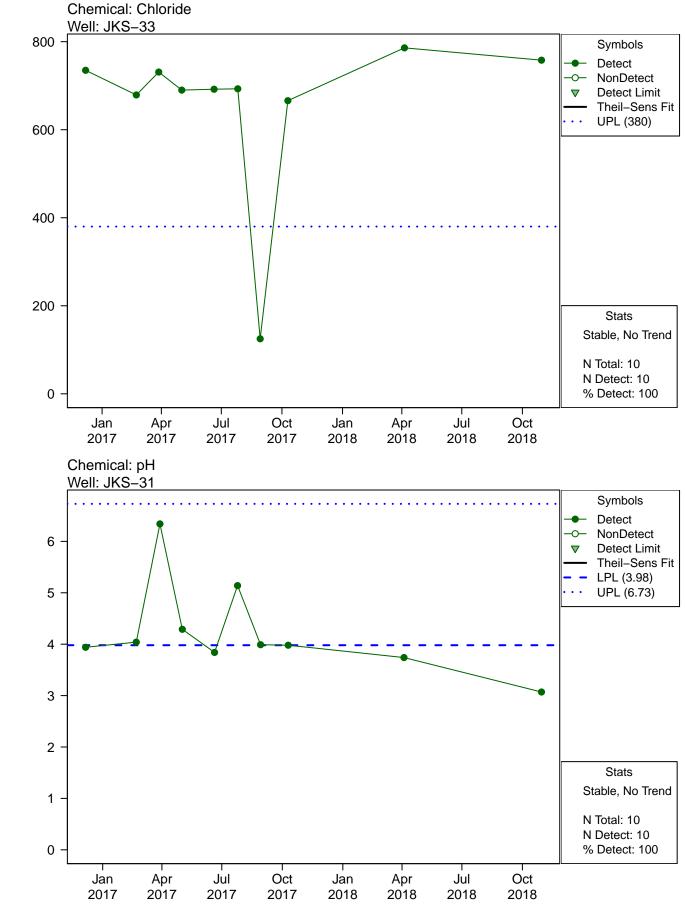


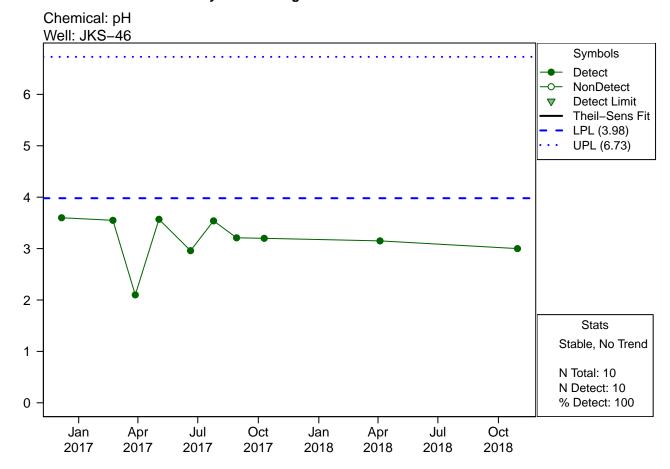

Intentionally left blank, not Lognormal/NDD distribution.

Intentionally left blank, not Lognormal/NDD distribution.



Concentration (mg/L)




Concentration (mg/L)

Appendix B – Figure 4 Unit: Fly Ash Landfill Trend Analysis of Downgradient Wells with Exceedances

Appendix B – Figure 4 Unit: Fly Ash Landfill Trend Analysis of Downgradient Wells with Exceedances

April 2018 Groundwater Sampling Event – Calaveras Power Station CCR Units

Appendix C

June 20, 2018

Mr. Michael Malone CPS Energy 145 Navarro Street San Antonio, Texas 78205

Project No. 0337367

Subject: April 2018 Groundwater Sampling Event Calaveras Power Station CCR Units San Antonio, Texas

Dear Mr. Malone:

Introduction

Title 40, Code of Federal Regulations, Part 257 (40 CFR §257) (a.k.a. the Coal Combustion Residual (CCR) Rule) was published in the Federal Register in April 2015 and became effective in October 2015. One of the many requirements of the CCR Rule was for CPS Energy to determine if there are impacts to groundwater from the surface impoundments [Evaporation Pond (EP), Bottom Ash Ponds (BAPs), and Sludge Recycling Holding (SRH) Pond] and the landfill [Fly Ash Landfill (FAL)] that contain CCR at the Calaveras Power Station.

In the initial *Annual Groundwater Monitoring and Corrective Action Report* for each CCR unit, the downgradient monitoring well results from the October 2017 sampling event were compared to the Upper Prediction Limits (UPLs) and Lower Prediction Limits (LPLs). UPLs and LPLs were calculated in the respective *Annual Groundwater Monitoring and Corrective Action Reports* for the purpose of determining a potential statistically significant increase (SSI) over background levels. The initial evaluation of the groundwater sample results indicated a potential SSI for a limited number of constituents from the EP, FAL, and BAPs. Groundwater sample results from the SRH Pond did not indicate a potential SSI.

According to the CCR Rule [§257.94(e)], if the owner or operator of a CCR unit determines there is a SSI over background levels for one or more Appendix III constituents, the owner or operator may demonstrate that a source other than the CCR unit caused the SSI over background levels or that the SSI resulted from error in sampling, analysis, statistical evaluation or natural variation in groundwater quality. The CCR Rule also indicates that the owner or operator must complete the written demonstration within 90 days of detecting a SSI over the background levels. If a successful demonstration is completed within the 90-day period, the owner or operator may continue with a detection monitoring program.

Environmental Resources Management

CityCentre Four 840 West Sam Houston Pkwy N. Suite 600 Houston, Texas 77024 (281) 600-1000 (281) 600-1001 (Fax) June 20, 2018 CPS Energy 0337367\A9179 Page 2 Environmental Resources Management

To address the potential SSIs identified in the initial *Annual Groundwater Monitoring and Corrective Action Reports,* CPS Energy prepared *Written Demonstration – Responses to Potential Statistically Significant Increases (Written Demonstration)* (dated April 4, 2018). Based on the evidence provided in the *Written Demonstration,* no SSIs over background levels were determined for any of the CPS Energy CCR units (EP, FAL, BAPs, and SRH Pond) and therefore, CPS Energy continued with a detection monitoring program that would include semiannual sampling.

Sampling Event Summary

The first semiannual groundwater sampling event was conducted in April 2018. The sampling event included the collection of water level measurements and groundwater samples from all the background and downgradient monitoring wells in the CCR monitoring program. The groundwater samples were analyzed for Appendix III constituents.

For each CCR unit, the downgradient monitoring well results from the April 2018 sampling event were compared to the UPLs and LPLs calculated in their respective *Annual Groundwater Monitoring and Corrective Action Report*. The April 2018 groundwater sample results for the downgradient monitoring wells in each CCR unit are summarized in Attachment 1.

Groundwater sample results from the SRH Pond did not indicate a potential SSI. Although the evaluations of the April 2018 groundwater sample results indicated a potential SSI for a limited number of constituents from the EP, FAL, and BAPs, the constituents associated with the potential SSIs are the same constituents, detected at similar concentrations, that were previously identified in the *Written Demonstration*. The evaluations of the April 2018 groundwater sample results with potential SSIs are summarized below.

EP – The constituents associated with potential SSIs include fluoride and pH. As previously presented in the *Written Demonstration*, the concentrations of fluoride and pH appear to reflect natural variation in groundwater quality in the vicinity of the CCR unit. The reported April 2018 concentrations were within the range of naturally occurring concentrations identified in the *Written Demonstration*.

FAL – The constituents associated with potential SSIs include calcium, chloride, and pH. As previously presented in the *Written Demonstration*, the concentrations of calcium, chloride, and pH appear to reflect natural variation in groundwater quality in the vicinity of the CCR unit. The reported April 2018 concentrations were within the range of naturally occurring concentrations identified in the *Written Demonstration*.

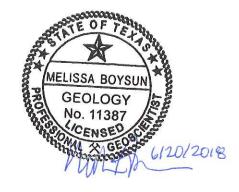
BAPs – The constituents associated with potential SSIs include fluoride and boron. As previously presented in the *Written Demonstration*, the concentrations of fluoride and boron appear to reflect natural variation in groundwater quality in the vicinity of the CCR unit. The reported April 2018 concentrations were within the range of naturally occurring concentrations identified in the *Written Demonstration*.

June 20, 2018 CPS Energy 0337367\A9179 Page 3

Conclusions

Environmental Resources Management

Based on the April 2018 groundwater sample results and the evidence provided in the *Written Demonstration* dated April 4, 2018, no SSIs over background levels have been determined for any of the CPS Energy CCR units (EP, FAL, BAPs, and SRH Pond) and therefore, CPS Energy should continue with a detection monitoring program. The second semiannual sampling event should be performed in October 2018.


We appreciate the opportunity to work with you on this project. Please contact me if you should have any questions.

Sincerely,

Environmental Resources Management

Melissa Boysun, P.G.

Texas Professional Geoscientist No. 11387

Attachment 1 April 2018 Groundwater Sample Results

> June 2018 Project No. 0337367 CPS Energy

Environmental Resources Management CityCentre Four 840 West Sam Houston Pkwy N. Suite 600 Houston, Texas 77024 (281) 600-1000

April 2018 Groundwater Sample Results CCR Unit: Evaporation Pond CPS Energy Calaveras Power Station San Antonio, TX

			EP	EP	EP	
		,	Downgradient	Downgradient	Downgradient	
			JKS-36	JKS-61	JKS-62	
			04/05/2018	04/05/2018	04/05/2018	
		Sa	Ν	Ν	Ν	
Chemical	Units	2017 LPL - EP	2017 UPL - EP			
Boron	mg/L		1.53	0.625	1.09	0.522
Calcium	mg/L	1380		281	171	160
Chloride	mg/L	2180		347	285	312
Fluoride	mg/L		0.465	1.95	0.406 J (1)	0.353 J (1)
pH, Field	SU	5.68	6.75	3.48	6.42	6.72
Sulfate	mg/L		1970	816	562	200
Total dissolved solids	mg/L		6640	1650	1620	1110

NOTES:

Shaded cell indicates exceedance in either the Upper Prediction Limit (UPL) or the Lower Prediction Limit (LPL) for this CCR unit. N - Normal

J - Estimated concentration. Qualified due to high matrix spike % recovery.

U - Analyte was not detected.

April 2018 Groundwater Sample Results CCR Unit: Fly Ash Landfill CPS Energy Calaveras Power Station San Antonio, TX

			CCR Unit	FAL	FAL	FAL	FAL
		,	Well Designation	Downgradient	Downgradient	Downgradient	Downgradient
			Well ID	JKS-31	JKS-33	JKS-46	JKS-60
			Sample Date	04/04/2018	04/05/2018	04/04/2018	04/04/2018
		Sa	mple Type Code	Ν	Ν	Ν	Ν
Chemical	Units	2017 LPL - FAL	2017 UPL - FAL				
Boron	mg/L		3.62	0.485	0.990	0.828	0.399
Calcium	mg/L		450	187	552	140	363
Chloride	mg/L		314	253 D	786	11.6	366 D
Fluoride	mg/L		3.62	0.839	1.85	2.16	0.220 J (1)
pH, Field	SU	4.02	6.73	3.74	6.33	3.15	6.09
Sulfate	mg/L		4680	771 D	1810	864 D	801 D
Total dissolved solids	mg/L		8040	1420	3970	1300	1860

NOTES:

Shaded cell indicates exceedance in either the Upper Prediction Limit (UPL) or the Lower Prediction Limit (LPL) for this CCR unit.

N - Normal

D - Sample was diluted due to targets detected over the highest point of the calibration curve or due to matrix interference. Dilution factors are included in the results.

J - Estimated concentration. Qualified due to high matrix spike % recovery.

U - Analyte was not detected.

April 2018 Groundwater Sample Results CCR Unit: Bottom Ash Ponds CPS Energy Calaveras Power Station San Antonio, TX

		CCR Unit	BAP	BAP	BAP	BAP	BAP	
			Well Designation	Downgradient	Downgradient	Downgradient	Downgradient	Downgradient
			Well ID	JKS-48	JKS-50R	JKS-52	JKS-55	JKS-56
			Sample Date	04/04/2018	04/04/2018	04/04/2018	04/04/2018	04/04/2018
	S	Sample Type Code	Ν	Ν	Ν	N	N	
Chemical	Units	2017 LPL - BAP	2017 UPL - BAP					
Boron	mg/L		3.52	2.03	3.52	1.95	0.645	3.95
Calcium	mg/L		334	143	127	175	134	126
Chloride	mg/L		523	433 D	170	360 D	387 D	121
Fluoride	mg/L		0.857	1.35	0.335 J (1)	0.720	0.791	0.370 J (1)
pH, Field	SU	5.56	7.33	6.91	6.67	6.79	6.75	6.64
Sulfate	mg/L		380	282 D	131	278 D	168	193
Total dissolved solids	mg/L		1830	1400	883	1240	1300	992

NOTES:

Shaded cell indicates exceedance in either the Upper Prediction Limit (UPL) or the Lower Prediction Limit (LPL) for this CCR unit.

N - Normal

D - Sample was diluted due to targets detected over the highest point of the calibration curve or due to matrix interference. Dilution factors are included in the results.

U - Analyte was not detected.

April 2018 Groundwater Sample Results CCR Unit: SRH Pond CPS Energy Calaveras Power Station San Antonio, TX

			CCR Unit	SRH Pond	SRH Pond	SRH Pond
			Well Designation	Downgradient	Downgradient	Downgradient
			JKS-52	JKS-53	JKS-54	
			04/04/2018	04/04/2018	04/05/2018	
		S	Ν	Ν	Ν	
Chemical	Units	2017 LPL - SRH	2017 UPL - SRH			
Boron	mg/L		3.46	1.95	1.60	1.26
Calcium	mg/L		326	175	113	111
Chloride	mg/L		516	360 D	361	382
Fluoride	mg/L		0.835	0.720	0.392 J (1)	0.742
pH, Field	SU	5.56	7.32	6.79	6.67	6.86
Sulfate	mg/L		374	278 D	249	309
Total dissolved solids	mg/L		1780	1240	1160	1230

NOTES:

N - Normal

D - Sample was diluted due to targets detected over the highest point of the calibration curve or due to matrix interference.

J - Estimated concentration. Qualified due to high matrix spike % recovery.

U - Analyte was not detected.