


### Annual Groundwater Monitoring and Corrective Action Report

CPS Energy Calaveras Power Station – Sludge Recycle Holding Pond San Antonio, Texas

February 2023

www.erm.com



Calaveras Power Station – Sludge Recycle Holding Pond

## Annual Groundwater Monitoring and Corrective Action Report

February 2023

Project No. 0636109 San Antonio, Texas

Jeffery L. Bauguss, P.E.

Walter Zuerina

Partner-in-Charge

Walter Zverina

Project Manager

Nicholas Houtchens, P.G.<sub>TX</sub>

Senior Geologist

**Environmental Resources Management Southwest, Inc.** 

111 Congress Avenue, Suite 500

Austin, TX 78701 T: 512-459-4700

Texas Registered Engineering Firm F-2393 Texas Board of Professional Geoscientist Firm 50036

© Copyright 2023 by The ERM International Group Limited and/or its affiliates ("ERM"). All Rights Reserved. No part of this work may be reproduced or transmitted in any form, or by any means, without the prior written permission of ERM.



#### **TABLE OF CONTENTS**

| 1.         | CU      | RRENT STATUS SUMMARY1                      |
|------------|---------|--------------------------------------------|
| 2.         | INT     | TRODUCTION1                                |
| 3.         | PR      | OGRAM STATUS2                              |
| į          | 3.1     | GROUNDWATER OBSERVATIONS                   |
| į          | 3.2     | SAMPLING SUMMARY                           |
| į          | 3.3     | DATA QUALITY                               |
| 4.         | STA     | ATISTICAL ANALYSIS AND RESULTS4            |
| 4          | 4.1     | INTERWELL VERSUS INTRAWELL COMPARISONS4    |
| 4          | 4.2     | ESTABLISHMENT OF UPGRADIENT DATASET4       |
|            | 4.2.    |                                            |
|            | 4.2.    | •                                          |
|            | 4.2.    |                                            |
| 4          | 4.3     | ESTABLISHING UPPER PREDICTION LIMITS       |
|            | 4.4     | CONCLUSIONS                                |
| 5          | RE      | COMMENDATIONS7                             |
| 6.         |         | FERENCES                                   |
| •          |         |                                            |
|            |         |                                            |
|            | st of T | Tables                                     |
| 1          |         | Groundwater Elevations Summary             |
| 2          |         | Groundwater Sampling Summary               |
| 3          |         | Groundwater Analytical Results Summary     |
|            |         |                                            |
|            | st of I | Eigures                                    |
| 1          |         | CCR Well Network Location Map              |
| 2 <i>A</i> | L       | Potentiometric Surface Map – April 2022    |
| 2 <i>B</i> | }       | Potentiometric Surface Map - October 2022  |
| Lia        | st of 4 | Appendices                                 |
| Lis<br>A   | si oj I | Laboratory Data Packages                   |
| В          |         | Statistical Analysis Tables and Figures    |
| C          |         | April 2022 Groundwater Sampling Results    |
| _          |         | 11p. to 2022 Growing week Company recontro |

#### 1. CURRENT STATUS SUMMARY

As required in Title 40, Code of Federal Regulations, Part 257.90, this section provides an overview of the current status of the groundwater monitoring and corrective action program for the Sludge Recycle Holding (SRH) Pond located at the CPS Energy Calaveras Power Station:

- At the start of the 2022 annual reporting period, the SRH Pond was operating under the detection monitoring program, as defined in §257.94;
- At the end of the 2022 annual reporting period, the SRH Pond was operating under the detection monitoring program, as defined in §257.94;
- At this time, there was no confirmed statistically significant increase over background for one or more constituents listed in Appendix III pursuant to §257.94(e);
- An assessment monitoring program was not required or initiated for the SRH Pond;
- A remedy was not required or selected pursuant to §257.97 during the 2022 annual reporting period; and
- No remedial activities were initiated or are ongoing pursuant to §257.98 during the 2022 annual reporting period.

#### 2. INTRODUCTION

CPS Energy owns and operates the Calaveras Power Station which consists of two power plants (J.T. Deely and J.K. Spruce) that are subject to regulation under Title 40, Code of Federal Regulations, Part 257 (40 CFR §257) Subpart D (a.k.a. the CCR Rule). The Power Station is located in unincorporated Bexar County, Texas, approximately 13 miles southeast of San Antonio. Currently, two CCR units are in operation [Fly Ash Landfill (FAL) and SRH Pond] and two CCR units are undergoing closure [Bottom Ash Ponds (BAPs) and Evaporation Pond (EP)]. This *Annual Groundwater Monitoring and Corrective Action Report* (Report) addresses only the SRH Pond.

This Report was produced by Environmental Resource Management, Inc. (ERM), on behalf of CPS Energy, and summarizes the groundwater monitoring activities for the SRH Pond in 2022 and provides a statistical summary of the findings for samples collected in October 2022. Consistent with the notification requirements of the CCR Rule, this Report will be posted to the operational record and notification will be made to the State of Texas. Additionally, this Report will be placed on the publicly accessible internet site (§257.105(h), §257.106(h), §257.107(h)). The table below cross references the reporting requirements under the CCR Rule with the contents of this Report.

Regulatory Requirement Cross-Reference

| Regulatory<br>Citation | Requirement (paraphrased)                                                                                                                 | Where Addressed in this Report                           |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| §257.90(e)             | Status of the groundwater monitoring and corrective action program                                                                        | Sections 1 and 3                                         |
| §257.90(e)             | Summarize key actions completed                                                                                                           | Section 3                                                |
| §257.90(e)             | Describe any problems encountered and actions to resolve problems                                                                         | Section 3                                                |
| §257.90(e)             | Key activities for upcoming year                                                                                                          | Section 5                                                |
| §257.90(e)(1)          | Map or aerial image of CCR unit and monitoring wells                                                                                      | Figure 1                                                 |
| §257.90(e)(2)          | Identification of new monitoring wells installed or decommissioned during the preceding year                                              | Section 3                                                |
| §257.90(e)(3)          | Summary of groundwater data, monitoring wells and dates sampled, and whether sample was required under detection or assessment monitoring | Sections 3 and 4,<br>Tables 1 through 3,<br>and Figure 2 |
| §257.90(e)(4)          | Narrative discussion of any transition between monitoring programs                                                                        | Section 5                                                |

The SRH Pond is located east of the Power Station generating units and is adjacent to and immediately west of the BAPs. The SRH Pond consists of one pond separated by a dividing wall (oriented north and south) containing flue gas desulphurization scrubber sludge. The SRH Pond was constructed in 1992. The CCR unit location is shown on Figure 1.

#### 3. PROGRAM STATUS

From December 2016 through October 2017, groundwater samples were collected as part of background sampling. After October 2017, groundwater samples were collected as part of Detection Monitoring. The samples were collected from the groundwater monitoring well network certified for use in determining compliance with the CCR Rule.

Historically, the groundwater monitoring well network consisted of two upgradient monitor wells (JKS-49 and JKS-51) and three downgradient monitor wells (JKS-52, JKS-53, and JKS-54). As documented in the 2020 Annual Groundwater Monitoring and Corrective Action Report – Sludge Recycle Holding Pond (ERM, 2020), non-proportional changes in water levels were observed during the 2020 monitoring events and a site-wide water level study (Study) was recommended to understand temporal changes in hydrogeology. ERM completed this Study by collecting five rounds of water level measurements at each CCR Unit, which included observations from other on-site monitoring wells, from February to October 2021.

As documented in the Study, JKS-49 and JKS-51 no longer appeared to be viable background wells and ERM recommended the installation of one or two new monitor wells located north of the SRH Pond. One monitor well (JKS-70) was installed in July 2022 and was designated as a background well for the SRH Pond. As such, the revised groundwater monitoring well network consists of two upgradient monitor wells (JKS-70 and JKS-51) and three downgradient monitor wells (JKS-52, JKS-53, and JKS-54). This revision to the groundwater monitoring network will be documented in updated *Groundwater Monitoring System* and *Groundwater Sampling and Analysis Program (GSAP)* documents for the Power Station.

All monitor wells are screened within the uppermost groundwater bearing unit (GWBU) in the vicinity of the SRH Pond. The uppermost GWBU varies in thickness from approximately 9.5 to 21.5 feet thick and is comprised of clayey/silty sand to moderately-sorted sand. The uppermost GWBU is located below semi-confining units (i.e., clay, sandy clay, or silty clay), and above a sandstone bedrock unit.

The monitor well locations are shown in Figure 1. No problems were encountered in the data collection or in well performance, and no action was required to resolve any issues. As noted above, one new monitor well (JKS-70) was installed in July 2022 and no monitor wells were decommissioned after the certification of the well network.

#### 3.1 GROUNDWATER OBSERVATIONS

Depth to groundwater surface measurements were made at each monitor well prior to each sampling event. Groundwater elevations were calculated by subtracting the depth to groundwater measurement from the surveyed reference elevation for each well.

Groundwater elevations collected during all the monitoring events are summarized in Table 1. Groundwater elevations and the potentiometric surface for the April and October 2022 monitoring events are shown on Figure 2A and Figure 2B, respectively. As measured during the April 2022 monitoring event, groundwater appears to flow south to southeast towards the northern portion of the BAPs. Groundwater in the vicinity of the southern and western extent of the BAPs appears to flow east to northeast towards Calaveras Lake. The horizontal gradient is approximately 0.001 feet/foot.

Groundwater elevations measured during the October 2022 monitoring event appear to display a southeastern groundwater flow towards the northern extent of the BAPs, which converges with groundwater flow from the southwest towards a potentiometric low near monitor well JKS-49. The horizontal gradient is approximately 0.003 feet/foot.

As previously documented, non-proportional changes in water levels have been observed since the 2020 monitoring events and these changes are evident in the 2022 monitoring events. CPS Energy will continue to monitor and evaluate these changes to understand temporal changes in hydrogeology.

#### 3.2 SAMPLING SUMMARY

A summary of the total number of samples collected from each monitor well is provided in Table 2. Groundwater analytical results for Appendix III constituents for all the monitoring events are summarized in Table 3. Laboratory data packages are provided in Appendix A.

The SRH Pond monitoring wells were sampled by CPS Energy using low flow sampling techniques during the monitoring events. No data gaps were identified during the 2022 semi-annual groundwater monitoring events.

#### 3.3 DATA QUALITY

ERM reviewed field and laboratory documentation to assess the validity, reliability and usability of the analytical results. Samples were sent to San Antonio Testing Laboratory (SATL), located in San Antonio, Texas for analysis. Chain-of-Custody procedures were followed throughout the sample handling process. Data quality information reviewed for these results

included field sampling forms, chain-of-custody documentation, holding times, lab methods, cooler temperatures, laboratory method blanks, laboratory control sample recoveries, field duplicate samples, matrix spikes / matrix spike duplicates, quantitation limits, and equipment blanks following data quality review guidance from the Environmental Protection Agency and the Texas Commission on Environmental Quality. A summary of the data usability qualifiers is included in Table 3. The data quality review found the results to be valid, reliable, and useable for decision making purposes with the listed qualifiers. No analytical results were rejected.

#### 4. STATISTICAL ANALYSIS AND RESULTS

Consistent with the CCR Rule and with the GSAP, a prediction limit approach (40 CFR §257.93(f)) was used to identify potential impacts to groundwater. The steps outlined in the decision framework in the GSAP include:

- Interwell versus intrawell comparisons;
- Establishment of the upgradient dataset;
- Calculating prediction limits; and
- Conclusions.

Tables and figures generated as part of the statistical analysis, including updating of prediction limits, are provided in Appendix B. The remaining sections of the Report are focused on evaluation of the most recent October 2022 data. Note the April 2022 sampling results were evaluated as discussed in Appendix C. The April 2022 sampling results were evaluated relative to the existing prediction limits.

#### 4.1 INTERWELL VERSUS INTRAWELL COMPARISONS

When multiple upgradient wells were available within the same unit, concentrations were compared among these wells to determine if they could be pooled to create a single, interwell, upgradient dataset. For each analyte, Boxplots (Appendix B, Figure 1) and Kruskal-Wallis test results (Appendix B, Table 1) are provided for upgradient wells. The statistical tests indicate that:

• All analytes were found to follow interwell (pooled) analysis.

As discussed in the *GSAP*, interwell analytes will use a pooled upgradient dataset in the following sections.

#### 4.2 ESTABLISHMENT OF UPGRADIENT DATASET

When evaluating the concentrations of analytes in groundwater, USEPA guidance (2009) recommends performing a careful quality check of the data to identify any anomalies. In addition to the data validation that was performed, descriptive statistics, outlier testing, and temporal stationarity checks were completed to finalize the upgradient dataset.

#### 4.2.1 Descriptive Statistics

Descriptive statistics were calculated for the upgradient wells and analytes at the site (Appendix B, Table 2). The descriptive statistics highlight a number of relevant characteristics about the upgradient datasets including:

- There are two upgradient monitoring wells and seven Appendix III constituents for Detection Monitoring.
- There are a total of seven well-analyte combinations after accounting for interwell versus intrawell analysis.
- Seven well-analyte combinations have detection rates greater than or equal to 50 percent.
- No well-analyte combinations have 100 percent non-detects,
- Six well-analyte combinations have 100 percent detects.
- Five well-analyte combinations follow a normal distribution (using Shapiro-Wilks Normality Test)
- No well-analyte combinations follow a log-normal distribution.
- Two well-analyte combinations have no discernible distribution.

#### 4.2.2 Outlier Determination

Both statistical and visual outlier tests were performed on the upgradient datasets. A total of three outliers were initially flagged in the upgradient datasets. Data points identified as both statistical and visual outliers (Appendix B, Table 3 and Appendix B, Figure 2) were reviewed prior to exclusion from the dataset.

Of the three data points that were flagged as outliers, all three were retained in the dataset. After review, it was determined that these values were consistent with natural fluctuations and concentrations detected in other upgradient wells or in the area prior to operation. No analytical or sampling issues were identified during data review; therefore, the three outlier values were considered valid and were retained in the upgradient datasets.

#### 4.2.3 *Check for Temporal Stability*

A trend test was performed for all values in the upgradient wells with at least eight detected data points and at least 50 percent detection rate. Time series figures of upgradient wells are provided in Appendix B, Figure 3. Additionally, the Mann Kendall trend test results are provided in Appendix B, Table 4. The results of the trend analysis indicate that:

- There are a total of seven well-analyte combinations in the upgradient dataset.
- Seven well-analyte combinations meet the data requirements of the trend test.
- Two well-analyte combinations had a significant increasing trend.
- No well-analyte combinations had a significant decreasing trend.
- Five well-analyte combinations had no significant trend (i.e., concentrations were stable over time).

#### 4.3 ESTABLISHING UPPER PREDICTION LIMITS

A multi-part assessment of the monitoring wells was performed to determine what type of upper prediction limit (UPL) to calculate as a compliance point. A decision framework was applied for each upgradient well based on interwell/intrawell analysis, data availability, and presence of temporal trends. A summary of the UPLs (and LPLs) and the methods used to calculate them are provided in Appendix B, Table 5.

A total of two well-analyte combinations were found to have either increasing or decreasing trends. For these well-analyte pairs, a bootstrapped UPL calculated around a Theil Sen trend was used to derive a more accurate UPL.

The remaining five well-analyte combinations were found to have no significant trend. Sanitas was used to calculate static UPLs using an annual site-wide false positive rate of 0.1 with a 1-of-2 re-testing approach.

A final UPL was selected for each analyte and compared to the most recent sample result in each downgradient well. For pH, a final lower prediction limit (LPL) was also identified and used for comparison. For the seven analytes with interwell analysis, the upgradient dataset was pooled prior to UPL calculations, resulting in a single UPL value per analyte. A similar approach was used to determine the LPL for pH. All final UPL and LPL values are shown in the table below. Full upgradient well prediction limit calculations are provided in Appendix B, Table 5.

Final UPLs and LPLs Values

| <b>Analysis Type</b> | Analyte                | LPL  | UPL   | Unit |
|----------------------|------------------------|------|-------|------|
| Interwell            | Boron                  | -    | 0.726 | mg/L |
| Interwell            | Calcium                | -    | 404   | mg/L |
| Interwell            | Chloride               | -    | 658   | mg/L |
| Interwell            | Fluoride               | _    | 0.547 | mg/L |
| Interwell            | рН                     | 5.48 | 7.16  | SU   |
| Interwell            | Sulfate                | _    | 616   | mg/L |
| Interwell            | Total Dissolved Solids | _    | 3,180 | mg/L |

#### 4.4 CONCLUSIONS

The downgradient samples collected during the October 2022 sampling event were used for compliance comparisons. All downgradient wells were below the UPLs and above the LPLs with the following exceptions shown on the table below. Full downgradient results are provided in Appendix B, Table 6.

#### **Potential Exceedances**

| Analyte  | Well   | LPL | UPL   | Sample Date | Value | Unit |
|----------|--------|-----|-------|-------------|-------|------|
| Boron    | JKS-52 | -   | 0.726 | 2022-10-25  | 2.37  | mg/L |
| Boron    | JKS-53 | _   | 0.726 | 2022-10-25  | 1.59  | mg/L |
| Boron    | JKS-54 | -   | 0.726 | 2022-10-25  | 1.24  | mg/L |
| Fluoride | JKS-52 | _   | 0.547 | 2022-10-25  | 0.686 | mg/L |
| Fluoride | JKS-54 | _   | 0.547 | 2022-10-25  | 0.779 | mg/L |

Initial exceedances of the UPL may be confirmed with re-testing of the downgradient wells per the 1-of-2 retesting scheme. If the initial exceedance is confirmed with re-testing results in the same well, the well-analyte pair will be declared a statistically significant increase (SSI) above background. If an SSI is found, a notification or alternate source demonstration will be prepared within 90 days. Any wells with re-testing results at or below the UPL, and at or greater than the LPL, will be considered in compliance and will not require further action. These re-testing results will be reported in the subsequent *Alternative Source Demonstration*.

All downgradient wells with initial exceedances were examined for trends to assess the stability of concentrations. A summary of these trend test results can be found in Appendix B, Table 4. Of the wells with potential SSIs, boron concentrations had an increasing trend at JKS-52.

Trends in these wells relative to UPLs, and LPLs for pH, will be monitored closely in future monitoring events. All wells with potential SSIs are plotted in Appendix B, Figure 4. All potential SSIs are within one order of magnitude of the UPL.

#### 5 RECOMMENDATIONS

Currently, there are no plans to transition between Detection Monitoring and Assessment Monitoring. Consistent with the 1-of-2 retesting approach described in the Unified Guidance (USEPA 2009) and the SAP, initial exceedances may be retested within 90 days. Based on these findings, Detection Monitoring and/or Assessment Monitoring will be initiated as appropriate under §257.94 and §257.95.

#### 6. REFERENCES

ERM, 2017. *Groundwater Sampling and Analysis Program*. CPS Energy, Calaveras Power Station, San Antonio, Texas.

USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities. Unified Guidance. USEPA/530/R/09/007. Office of Resource Conservation and Recovery. Washington, D.C.



TABLE 1 Groundwater Elevations Summary CPS Energy - Calaveras Power Station SRH Pond

|                |                      | JKS-49 Und     | classified  | JKS-51 Upç     | gradient    | JKS-52 Dow     | ngradient   | JKS-53 Dow     | ngradient   | JKS-54 Dow     | ngradient   |
|----------------|----------------------|----------------|-------------|----------------|-------------|----------------|-------------|----------------|-------------|----------------|-------------|
|                |                      | TOC Elevation  | 498.63      | TOC Elevation  | 496.92      | TOC Elevation  | 493.15      | TOC Elevation  | 494.74      | TOC Elevation  | 496.40      |
| Sampling Event | Sampling Event Dates | Depth to Water | Water Level |
|                | 40/0/40 +- 40/0/40   | (feet btoc)    | (msl)       |
| 1              | 12/6/16 to 12/8/16   | 8.81           | 489.82      | 10.76          | 486.16      | 7.53           | 485.62      | 7.70           | 487.04      | 10.19          | 486.21      |
| 2              | 2/21/17 to 2/23/17   | 8.56           | 490.07      | 10.80          | 486.12      | 7.43           | 485.72      | 8.52           | 486.22      | 10.48          | 485.92      |
| 3              | 3/28/17 to 3/30/17   | 8.90           | 489.73      | 10.59          | 486.33      | 7.33           | 485.82      | 8.95           | 485.79      | 10.64          | 485.76      |
| 4              | 5/2/17 to 5/4/17     | 8.85           | 489.78      | 10.56          | 486.36      | 7.35           | 485.80      | 8.74           | 486.00      | 10.64          | 485.76      |
| 5              | 6/20/17 to 6/21/17   | 8.75           | 489.88      | 10.56          | 486.36      | 7.46           | 485.69      | 8.47           | 486.27      | 10.71          | 485.69      |
| 6              | 7/25/17 to 7/26/17   | 8.46           | 490.17      | 10.68          | 486.24      | 7.50           | 485.65      | 8.85           | 485.89      | 10.85          | 485.55      |
| 7              | 8/29/17 to 8/30/17   | 7.21           | 491.42      | 10.48          | 486.44      | 7.40           | 485.75      | 8.55           | 486.19      | 9.50           | 486.90      |
| 8              | 10/10/17 to 10/11/17 | 11.17          | 487.46      | 10.98          | 485.94      | 7.53           | 485.62      | 9.21           | 485.53      | 11.17          | 485.23      |
| 9              | 4/4/18 to 4/5/18     | 9.00           | 489.63      | 10.93          | 485.99      | 8.48           | 484.67      | 8.90           | 485.84      | 10.76          | 485.64      |
| 10             | 10/30/18 to 10/31/18 | 6.88           | 491.75      | 10.45          | 486.47      | 8.33           | 484.82      | 8.40           | 486.34      | 10.55          | 485.85      |
| 11             | 4/9/19 to 4/10/19    | 12.52          | 486.11      | 11.02          | 485.90      | 7.65           | 485.50      | 8.96           | 485.78      | 10.75          | 485.65      |
| 12             | 10/22/19 to 10/23/19 | 14.84          | 483.79      | 12.00          | 484.92      | 9.40           | 483.75      | 9.91           | 484.83      | 11.47          | 484.93      |
| 13             | 4/28/20 to 4/29/20   | 13.58          | 485.05      | 11.79          | 485.13      | 8.20           | 484.95      | 9.75           | 484.99      | 11.33          | 485.07      |
| 14             | 10/20/20 to 10/21/20 | 14.42          | 484.21      | 12.11          | 484.81      | 8.07           | 485.08      | 9.73           | 485.01      | 11.47          | 484.93      |
| 15             | 4/13/20 to 4/14/21   | 13.60          | 485.03      | 11.80          | 485.12      | 8.04           | 485.11      | 9.59           | 485.15      | 11.29          | 485.11      |
| 16             | 10/19/21 to 10/20/21 | 13.33          | 485.30      | 11.67          | 485.25      | 7.99           | 485.16      | 9.43           | 485.31      | 11.10          | 485.30      |
| 17             | 4/13/22 to 4/14/22   | 14.16          | 484.47      | 12.25          | 484.67      | 8.34           | 484.81      | 10.00          | 484.74      | 11.55          | 484.85      |
| 18             | 10/25/22 to 10/26/22 | 14.81          | 483.82      | 12.53          | 484.39      | 8.19           | 484.96      | 9.78           | 484.96      | 11.60          | 484.80      |

btoc = below top of casing msl = mean sea level

TABLE 2 Groundwater Sampling Summary CPS Energy - Calaveras Power Station SRH Pond

| CCR Unit | Well ID | Well Function           | Number of<br>Samples        |                       |                       |                       |                     |                       |                       |                       | 2                       | 016 - 2022 \$       | Sample Dates            | s                    |                         |                       |                         |                      |                         |                       |                         | Monitoring |
|----------|---------|-------------------------|-----------------------------|-----------------------|-----------------------|-----------------------|---------------------|-----------------------|-----------------------|-----------------------|-------------------------|---------------------|-------------------------|----------------------|-------------------------|-----------------------|-------------------------|----------------------|-------------------------|-----------------------|-------------------------|------------|
| COK UIII | weii ib | Well Fullction          | Collected in<br>2016 - 2022 | 12/6/16 to<br>12/8/16 | 2/21/17 to<br>2/23/17 | 3/28/17 to<br>3/30/17 | 5/2/17 to<br>5/4/17 | 6/20/17 to<br>6/21/17 | 7/25/17 to<br>7/26/17 | 8/29/17 to<br>8/30/17 | 10/10/17 to<br>10/11/17 | 4/4/18 to<br>4/5/18 | 10/30/18 to<br>10/31/18 | 4/9/19 to<br>4/10/19 | 10/22/19 to<br>10/23/19 | 4/28/20 to<br>4/29/20 | 10/20/20 to<br>10/21/20 | 4/13/21to<br>4/14/21 | 10/19/21 to<br>10/20/21 | 4/13/22 to<br>4/14/22 | 10/25/22 to<br>10/26/22 | Program    |
|          | JKS-49  | Unclassified            | 18                          | Х                     | Х                     | X                     | Х                   | Х                     | Х                     | Х                     | Х                       | Х                   | Х                       | Х                    | Х                       | Х                     | X                       | Х                    | Х                       | Х                     | Х                       | Detection  |
|          | JKS-51  | Upgradient Monitoring   | 18                          | Х                     | Х                     | Х                     | Х                   | Х                     | Х                     | Х                     | Х                       | Х                   | Х                       | Х                    | Х                       | Х                     | X                       | Х                    | Х                       | Х                     | Х                       | Detection  |
| SRH Pond | JKS-52  | Downgradient Monitoring | 18                          | Х                     | Х                     | Х                     | Х                   | Х                     | Х                     | X                     | Х                       | Х                   | Х                       | Х                    | Х                       | Х                     | X                       | Х                    | Х                       | Х                     | Х                       | Detection  |
|          | JKS-53  | Downgradient Monitoring | 18                          | Х                     | Х                     | Х                     | Х                   | Х                     | Х                     | Х                     | Х                       | Х                   | Х                       | Х                    | Х                       | Х                     | Х                       | Х                    | Х                       | Х                     | Х                       | Detection  |
|          | JKS-54  | Downgradient Monitoring | 18                          | X                     | Х                     | Х                     | Х                   | Х                     | X                     | X                     | Х                       | Χ                   | X                       | X                    | Х                       | X                     | Х                       | Х                    | Х                       | X                     | X                       | Detection  |

X = Indicates that a sample was collected.

TABLE 3 Groundwater Analytical Results Summary CPS Energy - Calaveras Power Station SRH Pond

|                                     |             |               |               |               |               |               |               |               |               | JKS-49 Un | classified |          |          |            |          |          |          |          |          |
|-------------------------------------|-------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-----------|------------|----------|----------|------------|----------|----------|----------|----------|----------|
|                                     | Sample Date | 12/7/16       | 2/22/17       | 3/28/17       | 5/3/17        | 6/20/17       | 7/25/17       | 8/29/17       | 10/10/17      | 4/4/18    | 10/30/18   | 4/9/19   | 10/22/19 | 4/28/20    | 10/21/20 | 4/13/21  | 10/19/21 | 4/13/22  | 10/25/22 |
| _                                   | Task        | Event 1       | Event 2       | Event 3       | Event 4       | Event 5       | Event 6       | Event 7       | Event 8       | Event 9   | Event 10   | Event 11 | Event 12 | Event 13   | Event 14 | Event 15 | Event 16 | Event 17 | Event 18 |
| Constituents                        | Unit        | Dec 2016      | Feb 2017      | Mar 2017      | May 2017      | Jun 2017      | Jul 2017      | Aug 2017      | Oct 2017      | Apr 2018  | Oct 2018   | Apr 2019 | Oct 2019 | April 2020 | Oct 2020 | Apr 2021 | Oct 2021 | Apr 2022 | Oct 2022 |
| Appendix III - Detection Monitoring | g           |               |               |               |               |               |               |               |               |           |            |          |          |            |          |          |          |          |          |
| Boron                               | mg/L        | 3.24          | 3.28          | 3.28          | 3.03 X        | 3.04 J        | 2.76          | 2.85          | 2.87          | 2.71      | 2.70       | 2.05     | 2.58     | 2.47       | 2.81     | 2.59     | 2.50     | 2.50     | 2.60     |
| Calcium                             | mg/L        | 130           | 146           | 173           | 113           | 127           | 120           | 145           | 147           | 135       | 117 D      | 154 D    | 127 D    | 114 J      | 132      | 133      | 119      | 117      | 117      |
| Chloride                            | mg/L        | 295 D         | 383 D         | 372 D         | 326           | 414 D         | 448 D         | 459 D         | 424           | 446 D     | 408        | 449      | 429      | 452        | 435      | 449      | 437      | 455      |          |
| Fluoride                            | mg/L        | 0.715         |               | 0.665 JH      | 0.809         | 0.627 JH      | 0.617 JH      | 0.525         | 0.712         | 0.697     | 0.719      | 0.749    | 0.793    | 0.894      | 0.656    | 0.729    | 0.018 U  | 0.561    | 0.018 U  |
| Sulfate                             | mg/L        | 211 D         | 232 D         | 234 D         | 194           | 218 D         | 227           | 265 D         | 219 X         | 237       | 237        | 240      | 205      | 217        | 193      | 211      | 232      | 228      | 225      |
| pH - Field Collected                | SU          | 7.19          | 7.12          | 7.12          | 7.02          | 7.06          | 6.16          | 7.05          | 6.89          | 7.12      | 7.12       | 7.31     | 6.43     | 7.15       | 7.14     | 7.12     | 7.06     | 7.26     | 7.18     |
| Total dissolved solids              | mg/L        | 1250          | 1240          | 1190          | 1100          | 1450          | 1440          | 1490          | 1730          | 1310      | 1210       | 1290     | 1380     | 1240       | 1380     | 1290     | 1300     | 1380     | 1340     |
| Appendix IV - Assessment Monito     | ring        |               |               |               |               |               |               |               |               |           |            |          |          |            |          |          |          |          |          |
| Antimony                            | mg/L        | 0.00120 U     | 0.000240 U    | 0.000240 U    | 0.00173 J     | 0.00120 U     | 0.000240 U    | 0.000240 U    | 0.000240 U    | NR        | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Arsenic                             | mg/L        | 0.00123 U     | 0.000676 J    | 0.000729 J    | 0.00123 U     | 0.00123 U     | 0.000544 J    | 0.000538 J    | 0.000478 J    | NR        | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Barium                              | mg/L        | 0.0607        | 0.0575        | 0.0503        | 0.0554        | 0.0783        | 0.0721        | 0.0788        | 0.0735        | NR        | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Beryllium                           | mg/L        | 0.000654 U    | 0.000131 U    | 0.000131 U    | 0.000654 U    | 0.000654 U    | 0.000131 U    | 0.000131 U    | 0.000131 U    | NR        | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Cadmium                             | mg/L        | 0.000734 U    | 0.000147 U    | 0.000147 U    | 0.000734 U    | 0.000734 U    | 0.000147 U    | 0.000147 U    | 0.000147 U    | NR        | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Chromium                            | mg/L        | 0.00262 U     | 0.000859 J    | 0.000572 J    | 0.00262 U     | 0.00262 U     | 0.000963 J    | 0.000997 J    | 0.00113 J     | NR        | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Cobalt                              | mg/L        | 0.00102 J     | 0.00109 J     | 0.00124 J     | 0.00155 J     | 0.00133 J     | 0.00153 J     | 0.00155 J     | 0.00146 J     | NR        | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Fluoride                            | mg/L        | 0.715         | 0.643 JH      | 0.665 JH      | 0.809         | 0.627 JH      | 0.617 JH      | 0.525         | 0.712         | NR        | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Lead                                | mg/L        | 0.000758 U    | 0.000152 U    | 0.000152 U    | 0.000758 U    | 0.000758 U    | 0.000155 J    | 0.000152 U    | 0.000152 U    | NR        | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Lithium                             | mg/L        | 0.000476 U    | 0.000476 U    | 0.00238 U     | 0.0137 J      | 0.0341        | 0.0295        | 0.0427        | 0.0252        | NR        | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Mercury                             | mg/L        | 0.0000263 U   | 0.0000263 U   | 0.0000263 U   | 0.0000690 J   | 0.0000263 U   | 0.0000490 J   | 0.0000263 U   | 0.0000263 U   | NR        | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Molybdenum                          | mg/L        | 0.00779 J     | 0.00846       | 0.00875       | 0.0106        | 0.00908 J     | 0.00938       | 0.0107        | 0.0111        | NR        | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Selenium                            | mg/L        | 0.00992 J     | 0.00597       | 0.00479       | 0.00521 J     | 0.00370 J     | 0.00235       | 0.00188 J     | 0.00141 J     | NR        | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Thallium                            | mg/L        | 0.00166 U     | 0.000332 U    | 0.000332 U    | 0.00166 U     | 0.00166 U     | 0.000332 U    | 0.000332 U    | 0.000332 U    | NR        | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Radium-226                          | pCi/L       | 0.198 ± 0.197 | 0.615 ± 0.272 | 0.747 ± 0.323 | 0.195 ± 0.167 | 0.294 ± 0.192 | 0.241 ± 0.193 | 0.159 ± 0.191 | 0.746 ± 0.274 | NR        | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Radium-228                          | pCi/L       | 2.1 ± 0.907   | -1.37 ± 1.37  | 0.854 ± 0.724 | 1.08 ± 1.72   | 2.23 ± 0.949  | 0.658 ± 0.636 | 0.812 ± 0.604 | 1.43 ± 0.898  | NR        | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |

mg/L: Milligrams per Liter. SU: Standard Units.

pCi/L: Picocuries per Liter.

- --: Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- H: Bias in sample result likely to be high.
  J: Analyte detected above method
  (sample) detection limit but below method quantitation limit.
- NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at
- laboratory reporting limit (Sample
  Detection Limit).

  X: Matrix Spike/Matrix Spike Duplicate
  recoveries were found to be outside of the laboratory control limits.

TABLE 3 Groundwater Analytical Results Summary CPS Energy - Calaveras Power Station SRH Pond

|                                 |             |               |               |               |               |                |                |               |               | JKS-51 Up | gradient |          |          |            |          |          |          |          |          |
|---------------------------------|-------------|---------------|---------------|---------------|---------------|----------------|----------------|---------------|---------------|-----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|
|                                 | Sample Date | 12/8/16       | 2/22/17       | 3/28/17       | 5/3/17        | 6/21/17        | 7/25/17        | 8/29/17       | 10/10/17      | 4/4/18    | 10/30/18 | 4/9/19   | 10/22/19 | 4/28/20    | 10/20/20 | 4/13/21  | 10/20/21 | 4/13/22  | 10/25/22 |
|                                 | Task        | Event 1       | Event 2       | Event 3       | Event 4       | Event 5        | Event 6        | Event 7       | Event 8       | Event 9   | Event 10 | Event 11 | Event 12 | Event 13   | Event 14 | Event 15 | Event 16 | Event 17 | Event 18 |
| Constituents                    | Unit        | Dec 2016      | Feb 2017      | Mar 2017      | May 2017      | Jun 2017       | Jul 2017       | Aug 2017      | Oct 2017      | Apr 2018  | Oct 2018 | Apr 2019 | Oct 2019 | April 2020 | Oct 2020 | Apr 2021 | Oct 2021 | Apr 2022 | Oct 2022 |
| Appendix III - Detection Monito | ring        |               |               |               |               |                |                |               |               |           |          |          |          |            |          |          |          |          |          |
| Boron                           | mg/L        | 0.512         | 0.517         | 0.473         | 0.565         | 0.512          | 0.525          | 0.453         | 0.509         | 0.465     | 0.347    | 0.489    | 0.648    | 0.627      | 0.668    | 0.579    | 0.665    |          |          |
| Calcium                         | mg/L        | 267           | 292           | 322           | 266           | 261 X          | 232            | 236           | 256           | 246       | 149 D    | 328      | 336 D    | 334 J      | 298      | 314      | 321      | 362      |          |
| Chloride                        | mg/L        | 403 D         | 331 D         | 414 D         | 447           | 424 D          | 455 D          | 384 D         | 375           | 395 D     | 301      | 559      | 574 D    | 555        | 493      | 522      | 543      |          |          |
| Fluoride                        | mg/L        | 0.247         | 0.341 JH      | 0.415 JH      | 0.534         | 0.354          | 0.391          | 0.0960 U      | 0.407 JH      | 0.305 J   | 0.291 J  | 0.329 J  | 0.405 J  | 0.470      | 0.018 U  | 0.292    | 0.018 U  | 0.224    |          |
| Sulfate                         | mg/L        | 293 D         | 330 D         | 348 D         | 359           | 342 D          | 330 D          | 314 D         | 302           | 354 D     | 260      | 428      | 405 D    | 439        | 376      | 382      | 421      | 445      |          |
| pH - Field Collected            | SU          | 6.59          | 6.51          | 6.48          | 6.56          | 6.40           | 5.48           | 6.38          | 6.20          | 6.44      | 6.70     | 6.66     | 5.73     | 6.43       | 6.47     | 6.42     | 6.32     |          |          |
| Total dissolved solids          | mg/L        | 1650          | 1650          | 1490          | 1980          | 1530           | 1580           | 1390          | 1650          | 1320      | 916      | 1890     | 2150     | 2010       | 1930     | 2190     | 2260     | 2720     | 2490     |
| Appendix IV - Assessment Mon    | itoring     |               |               |               |               |                |                |               |               |           |          |          |          |            |          |          |          |          |          |
| Antimony                        | mg/L        | 0.00120 U     | 0.000240 U    | 0.000240 U    | 0.00120 U     | 0.000953 J     | 0.000240 U     | 0.000240 U    | 0.000240 U    | NR        | NR       | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Arsenic                         | mg/L        | 0.00123 U     | 0.000412 J    | 0.000390 J    | 0.00123 U     | 0.000392 J     | 0.000344 J     | 0.000395 J    | 0.000418 J    | NR        | NR       | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Barium                          | mg/L        | 0.0655        | 0.0563        | 0.0517        | 0.0512        | 0.0534         | 0.0520         | 0.0520        | 0.0564        | NR        | NR       | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Beryllium                       | mg/L        | 0.000654 U    | 0.000131 U    | 0.000131 U    | 0.000654 U    | 0.000212 J     | 0.000131 U     | 0.000131 U    | 0.000131 U    | NR        | NR       | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Cadmium                         | mg/L        | 0.000734 U    | 0.000147 U    | 0.000147 U    | 0.000734 U    | 0.000147 U     | 0.000147 U     | 0.000147 U    | 0.000147 U    | NR        | NR       | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Chromium                        | mg/L        | 0.00262 U     | 0.000941 J    | 0.000525 U    | 0.00262 U     | 0.000657 J     | 0.000874 J     | 0.00113 J     | 0.00133 J     | NR        | NR       | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Cobalt                          | mg/L        | 0.000350 U    | 0.0000770 J   | 0.0000920 J   | 0.000350 U    | 0.000124 J     | 0.0000940 J    | 0.0000800 J   | 0.000108 J    | NR        | NR       | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Fluoride                        | mg/L        | 0.247         | 0.341 JH      | 0.415 JH      | 0.534         | 0.354          | 0.391          | 0.0960 U      | 0.407 JH      | NR        | NR       | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Lead                            | mg/L        | 0.000758 U    | 0.000152 U    | 0.000152 U    | 0.000758 U    | 0.000152 U     | 0.000152 U     | 0.000152 U    | 0.000152 U    | NR        | NR       | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Lithium                         | mg/L        | 0.000476 U    | 0.000476 U    | 0.00238 U     | 0.0322        | 0.0874         | 0.0790         | 0.0958 JX     | 0.0718        | NR        | NR       | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Mercury                         | mg/L        | 0.0000263 U    | 0.000199 J     | 0.0000263 U   | 0.0000263 U   | NR        | NR       | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Molybdenum                      | mg/L        | 0.00128 U     | 0.000255 U    | 0.000255 U    | 0.00128 U     | 0.000255 U     | 0.000255 U     | 0.000255 U    | 0.000255 U    | NR        | NR       | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Selenium                        | mg/L        | 0.00227 U     | 0.000454 U    | 0.000454 U    | 0.00227 U     | 0.000454 U     | 0.000454 U     | 0.000454 U    | 0.000454 U    | NR        | NR       | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Thallium                        | mg/L        | 0.00166 U     | 0.000332 U    | 0.000332 U    | 0.00166 U     | 0.000332 U     | 0.000332 U     | 0.000332 U    | 0.000332 U    | NR        | NR       | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Radium-226                      | pCi/L       | 1.09 ± 0.376  | 0.104 ± 0.122 | 0.618 ± 0.247 | 0.197 ± 0.145 | 0.328 ± 0.195  | 0.0847 ± 0.186 | 4.83 ± 0.763  | 0.682 ± 0.309 | NR        | NR       | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Radium-228                      | pCi/L       | 0.312 ± 0.688 | 1.09 ± 1.37   | 2.32 ± 1.45   | -1.26 ± 1.37  | -0.799 ± 0.928 | 1.57 ± 0.786   | 0.762 ± 0.706 | 0.963 ± 0.954 | NR        | NR       | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |

mg/L: Milligrams per Liter. SU: Standard Units.

pCi/L: Picocuries per Liter.

- -- : Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- H: Bias in sample result likely to be high.
  J: Analyte detected above method
  (sample) detection limit but below method quantitation limit.
- NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at
- laboratory reporting limit (Sample
  Detection Limit).

  X: Matrix Spike/Matrix Spike Duplicate
  recoveries were found to be outside of the laboratory control limits.

ERM Houston\0636109\A11729 2022 SRH Tbls.xlsx Page 2 of 5

TABLE 3 Groundwater Analytical Results Summary CPS Energy - Calaveras Power Station SRH Pond

|                                 |             |              |               |                |             |               |               |               |               | JKS-52 Dow | ngradient |          |          |            |          |          |          |          |          |
|---------------------------------|-------------|--------------|---------------|----------------|-------------|---------------|---------------|---------------|---------------|------------|-----------|----------|----------|------------|----------|----------|----------|----------|----------|
|                                 | Sample Date | 12/7/16      | 2/21/17       | 3/28/17        | 5/2/17      | 6/21/17       | 7/25/17       | 8/29/17       | 10/10/17      | 4/4/18     | 10/30/18  | 4/9/19   | 10/22/19 | 4/28/20    | 10/21/20 | 4/13/21  | 10/20/21 | 4/13/22  | 10/25/22 |
|                                 | Task        | Event 1      | Event 2       | Event 3        | Event 4     | Event 5       | Event 6       | Event 7       | Event 8       | Event 9    | Event 10  | Event 11 | Event 12 | Event 13   | Event 14 | Event 15 | Event 16 | Event 17 | Event 18 |
| Constituents                    | Unit        | Dec 2016     | Feb 2017      | Mar 2017       | May 2017    | Jun 2017      | Jul 2017      | Aug 2017      | Oct 2017      | Apr 2018   | Oct 2018  | Apr 2019 | Oct 2019 | April 2020 | Oct 2020 | Apr 2021 | Oct 2021 | Apr 2022 | Oct 2022 |
| Appendix III - Detection Monito | oring       |              |               |                |             |               |               |               |               |            |           |          |          |            |          |          |          |          |          |
| Boron                           | mg/L        | 1.66         | 2.11          | 1.63           | 1.51        | 1.33          | 1.43          | 1.46          | 1.71 X        | 1.95       | 1.54      | 1.46 X   | 1.65     | 2.05       | 2.21     | 2.51     | 1.69     | 1.84     | 2.37     |
| Calcium                         | mg/L        | 169          | 181           | 189            |             | 145           | 140           | 162           | 168           | 175        | 153 D     | 195 DX   | 171 D    | 174 J      | 199      | 209      | 171      | 161      | 192      |
| Chloride                        | mg/L        | 331 D        | 377 D         | 323 DX         | 320         | 326 D         | 343 D         | 417 D         | 355           | 360 D      | 326       | 336      | 320      | 433        | 408      | 470      | 336      | 381      | 467      |
| Fluoride                        | mg/L        | 0.796        | 0.665         | 0.718 JH       | 0.915 JH    | 0.705         | 0.996 JH      | 0.0960 U      | 0.740         | 0.720      | 0.710     | 0.831    | 0.808    | 0.908      | 0.659    | 0.601    | 0.440 U  | 0.418    | 0.686    |
| Sulfate                         | mg/L        | 277 D        | 318 D         | 299 DX         | 290         | 287 D         | 292 D         | 171 D         | 289           | 278 D      | 292       | 268      | 288 D    | 315        | 282      | 292      | 282      | 299      | 319      |
| pH - Field Collected            | SU          | 7.01         | 6.47          | 6.91           | 6.94        | 6.87          | 5.87          | 6.81          | 6.63          | 6.79       | 6.76      | 6.91     | 6.00     | 6.83       | 6.78     | 6.70     | 6.71     | 6.97     |          |
| Total dissolved solids          | mg/L        | 1290         | 1380          | 1100           | 1250        | 1280          | 1250          | 1250          | 1220          | 1240       | 1210      | 1170     | 1270     | 1470       | 1430     | 1590     | 1290     | 1470     | 1540     |
| Appendix IV - Assessment Mo     | nitoring    |              |               |                |             |               |               |               |               |            |           |          |          |            |          |          |          |          |          |
| Antimony                        | mg/L        | 0.00120 U    | 0.000240 U    | 0.000240 U     | 0.000240 U  | 0.000240 U    | 0.000240 U    | 0.000240 U    | 0.000240 U    | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Arsenic                         | mg/L        | 0.00123 U    | 0.000565 J    | 0.000398 J     | 0.000425 J  | 0.000427 J    | 0.000392 J    | 0.000412 J    | 0.000448 J    | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Barium                          | mg/L        | 0.0646       | 0.0583        | 0.0519         | 0.0483      | 0.0527        | 0.0558        | 0.0565        | 0.0616        | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Beryllium                       | mg/L        | 0.000654 U   | 0.000131 U    | 0.000131 U     | 0.000131 U  | 0.000131 U    | 0.000131 U    | 0.000131 U    | 0.000153 J    | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Cadmium                         | mg/L        | 0.000734 U   | 0.000147 U    | 0.000147 U     | 0.000147 U  | 0.000147 U    | 0.000147 U    | 0.000147 U    | 0.000147 U    | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Chromium                        | mg/L        | 0.00262 U    | 0.000525 U    | 0.000525 U     | 0.000525 U  | 0.000841 J    | 0.000860 J    | 0.00123 J     | 0.00108 J     | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Cobalt                          | mg/L        | 0.00188 J    | 0.00233       | 0.00112 J      | 0.00119 J   | 0.00211       | 0.00183 J     | 0.00159 J     | 0.00189 J     | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Fluoride                        | mg/L        | 0.796        | 0.665         | 0.718 JH       | 0.915 JH    | 0.705         | 0.996 JH      | 0.0960 U      | 0.740         | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Lead                            | mg/L        | 0.000758 U   | 0.000152 U    | 0.000152 U     | 0.000152 U  | 0.000292 J    | 0.000152 U    | 0.000152 U    | 0.000163 J    | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Lithium                         | mg/L        | 0.000476 U   | 0.0471        | 0.000476 U     |             | 0.0616        | 0.0605        | 0.0827        | 0.0588        | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Mercury                         | mg/L        | 0.0000263 U  | 0.000234      | 0.0000263 U    | 0.0000263 U | 0.0000263 U   | 0.0000810 J   | 0.0000263 U   | 0.0000263 UX  | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Molybdenum                      | mg/L        | 0.00128 U    | 0.00128 J     | 0.00115 J      | 0.00102 J   | 0.000911 J    | 0.000865 J    | 0.000843 J    | 0.000914 J    | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Selenium                        | mg/L        | 0.00227 U    | 0.000454 U    | 0.000454 U     | 0.000454 U  | 0.000454 U    | 0.000454 U    | 0.000454 U    | 0.000454 U    | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Thallium                        | mg/L        | 0.00166 U    | 0.000332 U    | 0.000332 U     | 0.000332 U  | 0.000332 U    | 0.000332 U    | 0.000332 U    | 0.000332 U    | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Radium-226                      | pCi/L       | 1.71 ± 0.465 | 0.608 ± 0.289 | 0.296 ± 0.169  | 0 ± 0.150   | 0.435 ± 0.241 | 0.449 ± 0.196 | 0.194 ± 0.194 | 0.704 ± 0.319 | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Radium-228                      | pCi/L       | 2.65 ± 1.12  | 0.744 ± 0.833 | 0.0645 ± 0.649 | 0.53 ± 1.10 | 0.928 ± 0.784 | 1.16 ± 0.867  | 0.716 ± 0.767 | 1.54 ± 1.22   | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |

mg/L: Milligrams per Liter. SU: Standard Units.

pCi/L: Picocuries per Liter.

- -- : Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- H: Bias in sample result likely to be high.
  J: Analyte detected above method
  (sample) detection limit but below method quantitation limit.
- NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at
- laboratory reporting limit (Sample
  Detection Limit).

  X: Matrix Spike/Matrix Spike Duplicate
  recoveries were found to be outside of the laboratory control limits.

ERM Houston\0636109\A11729 2022 SRH Tbls.xlsx Page 3 of 5

TABLE 3 Groundwater Analytical Results Summary CPS Energy - Calaveras Power Station SRH Pond

|                                    |             |               |               |                 |               |                 |               |              |               | JKS-53 Dow | ngradient/ |          |          |            |          |          |          |          |          |
|------------------------------------|-------------|---------------|---------------|-----------------|---------------|-----------------|---------------|--------------|---------------|------------|------------|----------|----------|------------|----------|----------|----------|----------|----------|
|                                    | Sample Date | 12/8/16       | 2/23/17       | 3/29/17         | 5/2/17        | 6/21/17         | 7/26/17       | 8/30/17      | 10/11/17      | 4/4/18     | 10/30/18   | 4/9/19   | 10/22/19 | 4/28/20    | 10/20/20 | 4/13/21  | 10/20/21 | 4/13/22  | 10/25/22 |
|                                    | Task        | Event 1       | Event 2       | Event 3         | Event 4       | Event 5         | Event 6       | Event 7      | Event 8       | Event 9    | Event 10   | Event 11 | Event 12 | Event 13   | Event 14 | Event 15 | Event 16 | Event 17 | Event 18 |
| Constituents                       | Unit        | Dec 2016      | Feb 2017      | Mar 2017        | May 2017      | Jun 2017        | Jul 2017      | Aug 2017     | Oct 2017      | Apr 2018   | Oct 2018   | Apr 2019 | Oct 2019 | April 2020 | Oct 2020 | Apr 2021 | Oct 2021 | Apr 2022 | Oct 2022 |
| Appendix III - Detection Monitorin | ng          |               |               |                 |               |                 |               |              |               |            |            |          |          |            |          |          |          |          |          |
| Boron                              | mg/L        | 1.50          | 1.38          | 1.55            | 1.54          | 1.47            | 1.45          | 1.36         | 1.45          | 1.60       | 1.61       | 1.42     | 1.36     | 1.43       | 1.47     | 1.71     | 1.78     | 1.68     | 1.59     |
| Calcium                            | mg/L        | 134           | 105           | 156             | NR            | 94.1            | 97.0          | 99.0         | 113           | 113        | 111 D      | 116      | 123 D    | 114 J      | 117      | 156      | 127      | 115      | 125      |
| Chloride                           | mg/L        | 383 D         | 336 D         | 315 D           | 322           | 335 D           | 329 X         | 341          | 313           | 361        | 350        | 354      | 342      | 381        | 359      | 472      | 418      | 403      | 424      |
| Fluoride                           | mg/L        | 0.230         | 0.377         | 0.408           | 0.547 JH      | 0.339           | 0.385 J       | 0.412        | 0.0360 U      | 0.392 J    | 0.265 J    | 0.270 J  | 0.352 J  | 0.428      | 0.018 U  | 0.291    | 0.880 U  | 0.263    | 0.018 U  |
| Sulfate                            | mg/L        | 283 D         | 267 D         | 238 D           | 241           | 236 D           | 234 X         | 227          | 214           | 249        | 236        | 224      | 213      | 244        | 224      | 279      | 312      | 274      | 296      |
| pH - Field Collected               | SU          | 6.80          | 6.63          | 6.54            | 6.56          | 6.67            | 6.69          | 6.62         | 6.50          | 6.67       | 6.65       | 6.60     | 5.60     | 6.67       | 6.60     | 6.63     | 6.60     | 6.82     | 6.72     |
| Total dissolved solids             | mg/L        | 1390          | 1250          | 1160            | 1180          | 1150            | 1220          | 1150         | 1140          | 1160       | 1140       | 1150     | 1250     | 1160       | 1320     | 1520     | 1560     | 1330     | 1640     |
| Appendix IV - Assessment Monit     | oring       |               |               |                 |               |                 |               |              |               |            |            |          |          |            |          |          |          |          |          |
| Antimony                           | mg/L        | 0.00120 U     | 0.000240 U    | 0.000240 U      | 0.000240 U    | 0.000240 U      | 0.000240 U    | 0.000240 U   | 0.000240 U    | NR         | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Arsenic                            | mg/L        | 0.00123 U     | 0.000284 J    | 0.000266 J      | 0.000274 J    | 0.000276 J      | 0.000246 U    | 0.000246 U   | 0.000246 U    | NR         | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Barium                             | mg/L        | 0.0692        | 0.0633        | 0.0633          | 0.0623        | 0.0597          | 0.0638        | 0.0541       | 0.0617        | NR         | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Beryllium                          | mg/L        | 0.000654 U    | 0.000131 U    | 0.000131 U      | 0.000131 U    | 0.000131 U      | 0.000131 U    | 0.000131 U   | 0.000131 U    | NR         | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Cadmium                            | mg/L        | 0.000734 U    | 0.000147 U    | 0.000147 U      | 0.000147 U    | 0.000147 U      | 0.000147 U    | 0.000147 U   | 0.000147 U    | NR         | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Chromium                           | mg/L        | 0.00262 U     | 0.000701 J    | 0.000525 U      | 0.000525 U    | 0.000525 U      | 0.000557 J    | 0.000906 J   | 0.000525 U    | NR         | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Cobalt                             | mg/L        | 0.000356 J    | 0.000140 J    | 0.000135 J      | 0.000165 J    | 0.000137 J      | 0.000150 J    | 0.000163 J   | 0.0000699 U   | NR         | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Fluoride                           | mg/L        | 0.230         | 0.377         | 0.408           | 0.547 JH      | 0.339           | 0.385 J       | 0.412        | 0.0360 U      | NR         | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Lead                               | mg/L        | 0.000758 U    | 0.000152 U    | 0.000152 U      | 0.000152 U    | 0.000152 U      | 0.000152 U    | 0.000152 U   | 0.000152 U    | NR         | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Lithium                            | mg/L        | 0.0279        | 0.0816        | 0.000476 U      | NR            | 0.0931          | 0.104         | 0.125        | 0.109         | NR         | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Mercury                            | mg/L        | 0.0000263 U   | 0.0000780 J   | 0.0000263 U     | 0.0000263 U   | 0.0000263 U     | 0.0000263 U   | 0.0000470 JX | 0.0000263 U   | NR         | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Molybdenum                         | mg/L        | 0.00128 U     | 0.000290 J    | 0.000255 U      | 0.000255 U    | 0.000255 U      | 0.000255 U    | 0.000255 U   | 0.000255 U    | NR         | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Selenium                           | mg/L        | 0.00227 U     | 0.000454 U    | 0.000454 U      | 0.000454 U    | 0.000454 U      | 0.000454 U    | 0.000454 U   | 0.000454 U    | NR         | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Thallium                           | mg/L        | 0.00166 U     | 0.000332 U    | 0.000332 U      | 0.000332 U    | 0.000332 U      | 0.000332 U    | 0.000332 U   | 0.000332 U    | NR         | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Radium-226                         | pCi/L       | 0.306 ± 0.261 | 0.909 ± 0.363 | 0.117 ± 0.211 U | 0.519 ± 0.221 | 0.558 ± 0.232   | 0.385 ± 0.244 | 2.76 ± 0.582 | 0.451 ± 0.270 | NR         | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Radium-228                         | pCi/L       | 1.09 ± 1.24   | 2.33 ± 1.13   | 1.81 ± 1.61     | 0.906 ± 1.02  | -0.0622 ± 0.583 | 1.9 ± 1.24    | 1.44 ± 0.713 | 0.919 ± 0.853 | NR         | NR         | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |

mg/L: Milligrams per Liter. SU: Standard Units.

pCi/L: Picocuries per Liter.

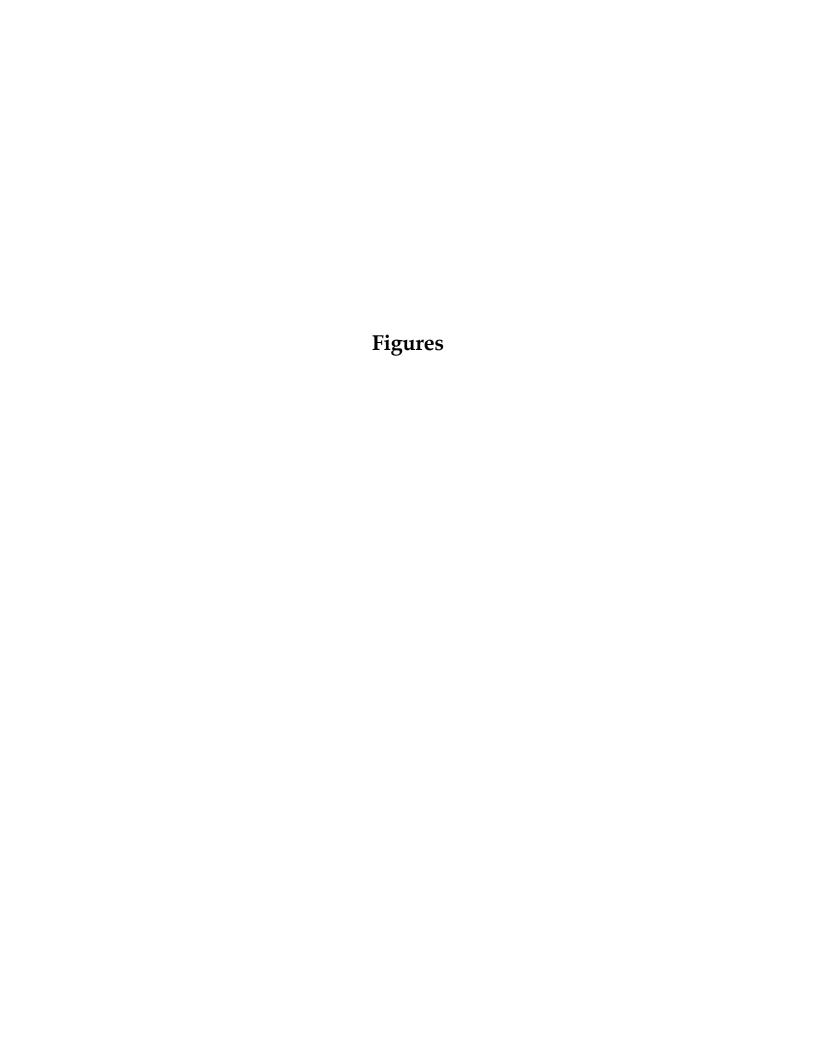
- -- : Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- H: Bias in sample result likely to be high.
  J: Analyte detected above method
  (sample) detection limit but below method quantitation limit.
- NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at
- laboratory reporting limit (Sample
  Detection Limit).

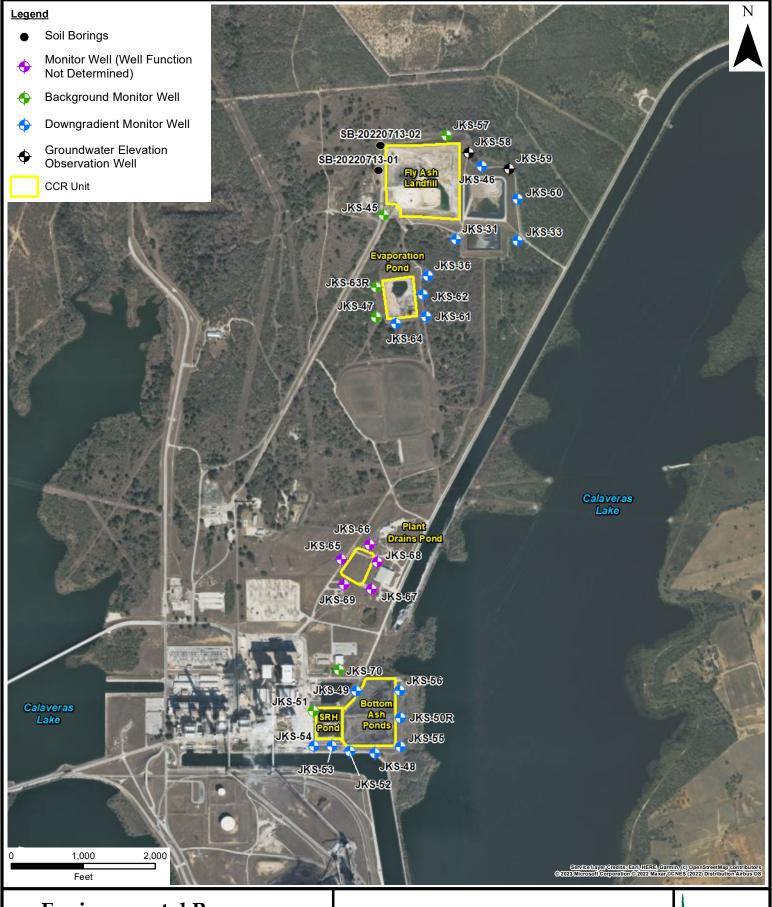
  X: Matrix Spike/Matrix Spike Duplicate
  recoveries were found to be outside of the laboratory control limits.

ERM Houston\0636109\A11729 2022 SRH Tbls.xlsx Page 4 of 5

TABLE 3 Groundwater Analytical Results Summary CPS Energy - Calaveras Power Station SRH Pond

|                                     | Γ           |                  |                   |               |               |                   |               |               |              | JKS-54 Dow | ngradient |          |          |            |          |          |          |          |          |
|-------------------------------------|-------------|------------------|-------------------|---------------|---------------|-------------------|---------------|---------------|--------------|------------|-----------|----------|----------|------------|----------|----------|----------|----------|----------|
|                                     | Sample Date | 12/8/16          | 2/23/17           | 3/28/17       | 5/2/17        | 6/21/17           | 7/26/17       | 8/30/17       | 10/11/17     | 4/5/18     | 10/30/18  | 4/9/19   | 10/22/19 | 4/28/20    | 10/20/20 | 4/13/21  | 10/20/21 | 4/13/22  | 10/25/22 |
|                                     | Task        | Event 1          | Event 2           | Event 3       | Event 4       | Event 5           | Event 6       | Event 7       | Event 8      | Event 9    | Event 10  | Event 11 | Event 12 | Event 13   | Event 14 | Event 15 | Event 16 | Event 17 | Event 18 |
| Constituents                        | Unit        | Dec 2016         | Feb 2017          | Mar 2017      | May 2017      | Jun 2017          | Jul 2017      | Aug 2017      | Oct 2017     | Apr 2018   | Oct 2018  | Apr 2019 | Oct 2019 | April 2020 | Oct 2020 | Apr 2021 | Oct 2021 | Apr 2022 | Oct 2022 |
| Appendix III - Detection Monitoring |             |                  |                   |               |               |                   |               |               |              |            |           |          |          |            |          |          |          |          |          |
| Boron                               | mg/L        | 1.24             | 1.16              | 1.35          | 1.26          | 1.14              | 1.26          | 1.16          | 1.28         | 1.26       | 1.30      | 1.38     | 1.50     | 1.23       | 1.31     | 1.22     | 1.21     | 1.16     | 1.24     |
| Calcium                             | mg/L        | 114              | 106               | 160           |               | 103               | 102           | 95.8          | 113          | 111        | 98.2 D    | 117      | 117 D    | 118 J      | 129      | 148      | 135      | 149      | 130      |
| Chloride                            | mg/L        | 345 D            | 350 D             | 353 D         | 344           | 355 D             | 354 D         | 339 D         | 328          | 382        | 356       | 385      | 368      | 380        | 383      | 385      | 401      | 472      |          |
| Fluoride                            | mg/L        | 0.718            | 0.731             | 0.655 JH      | 0.850 JH      | 0.623             | 0.728         | 0.0960 U      | 0.661        | 0.742      | 0.643     | 0.711    | 0.773    | 0.861      | 0.455 J  | 0.628    | 0.880 U  | 0.473    | 0.779    |
| Sulfate                             | mg/L        | 308 D            | 312 D             | 315 D         | 312           | 304 D             | 305 D         | 298 D         | 287          | 309        | 283       | 309      | 341 D    | 443        | 398      | 434      | 438      | 446      | 403      |
| pH - Field Collected                | SU          | 6.98             | 6.78              | 6.92          | 6.89          | 6.88              | 6.91          | 6.79          | 6.69         | 6.86       | 6.85      | 6.75     | 5.60     | 6.76       | 6.74     | 6.72     | 6.64     | 6.84     | 6.77     |
| Total dissolved solids              | mg/L        | 1370             | 1430              | 1310          | 1310          | 1410              | 1320          | 1360          | 1500         | 1230       | 1240      | 1470     | 1470     | 1570       | 1530     | 1650     | 1690     | 1680     | 1680     |
| Appendix IV - Assessment Monitori   | ing         |                  |                   |               |               |                   |               |               |              |            |           |          |          |            |          |          |          |          |          |
| Antimony                            | mg/L        | 0.00120 U        | 0.000240 U        | 0.000240 U    | 0.000240 U    | 0.000240 U        | 0.000240 U    | 0.000240 U    | 0.000240 U   | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Arsenic                             | mg/L        | 0.00123 U        | 0.000369 J        | 0.000898 J    | 0.000351 J    | 0.000354 J        | 0.000484 J    | 0.000324 J    | 0.000246 U   | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Barium                              | mg/L        | 0.0631           | 0.0564            | 0.0611        | 0.0537        | 0.0543            | 0.0593        | 0.0471        | 0.0558       | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Beryllium                           | mg/L        | 0.000654 U       | 0.000131 U        | 0.000131 U    | 0.000131 U    | 0.000162 J        | 0.000131 U    | 0.000131 U    | 0.000131 U   | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Cadmium                             | mg/L        | 0.000734 U       | 0.000147 U        | 0.000147 U    | 0.000147 U    | 0.000147 U        | 0.000147 U    | 0.000147 U    | 0.000147 U   | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Chromium                            | mg/L        | 0.00262 U        | 0.000657 J        | 0.00186 J     | 0.000525 U    | 0.000525 U        | 0.000693 J    | 0.000765 J    | 0.000525 U   | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Cobalt                              | mg/L        | 0.000420 J       | 0.000212 J        | 0.00199 J     | 0.000253 J    | 0.000260 J        | 0.000532 J    | 0.000334 J    | 0.0000699 U  | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Fluoride                            | mg/L        | 0.718            | 0.731             | 0.655 JH      | 0.850 JH      | 0.623             | 0.728         | 0.0960 U      | 0.661        | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Lead                                | mg/L        | 0.000758 U       | 0.000152 U        | 0.000862 J    | 0.000152 U    | 0.000152 U        | 0.000241 J    | 0.000152 U    | 0.000152 U   | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Lithium                             | mg/L        | 0.000476 U       | 0.0452            | 0.00238 U     |               | 0.0595            | 0.0599        | 0.0712        | 0.0608       | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Mercury                             | mg/L        | 0.0000263 U      | 0.0000620 J       | 0.0000263 U   | 0.0000263 U   | 0.0000263 U       | 0.0000263 U   | 0.0000263 U   | 0.0000263 U  | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Molybdenum                          | mg/L        | 0.00128 U        | 0.000447 J        | 0.000367 J    | 0.000377 J    | 0.000342 J        | 0.000352 J    | 0.000260 J    | 0.000255 U   | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Selenium                            | mg/L        | 0.00227 U        | 0.000454 U        | 0.000454 U    | 0.000454 U    | 0.000454 U        | 0.000454 U    | 0.000454 U    | 0.000454 U   | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Thallium                            | mg/L        | 0.00166 U        | 0.000332 U        | 0.000332 U    | 0.000332 U    | 0.000332 U        | 0.000332 U    | 0.000332 U    | 0.000332 U   | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Radium-226                          | pCi/L       | $0.88 \pm 0.339$ | $0.878 \pm 0.358$ | 0.546 ± 0.213 | 0.217 ± 0.217 | $0.433 \pm 0.249$ | 0.313 ± 0.254 | 0.926 ± 0.324 | 0.42 ± 0.205 | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |
| Radium-228                          | pCi/L       | 1.12 ± 1.11      | 1.94 ± 1.01       | 0.429 ± 0.781 | 0.574 ± 1.41  | 0.451 ± 0.660     | 0.766 ± 1.29  | 1.48 ± 0.968  | 1.17 ± 0.827 | NR         | NR        | NR       | NR       | NR         | NR       | NR       | NR       | NR       | NR       |


mg/L: Milligrams per Liter. SU: Standard Units.


pCi/L: Picocuries per Liter.

- -- : Laboratory did not analyze sample for indicated constituent.
- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- H: Bias in sample result likely to be high.
  J: Analyte detected above method
  (sample) detection limit but below method quantitation limit.
- NR: Analysis of this constituent not required for detection monitoring.
- U: Analyte not detected at
- laboratory reporting limit (Sample
  Detection Limit).

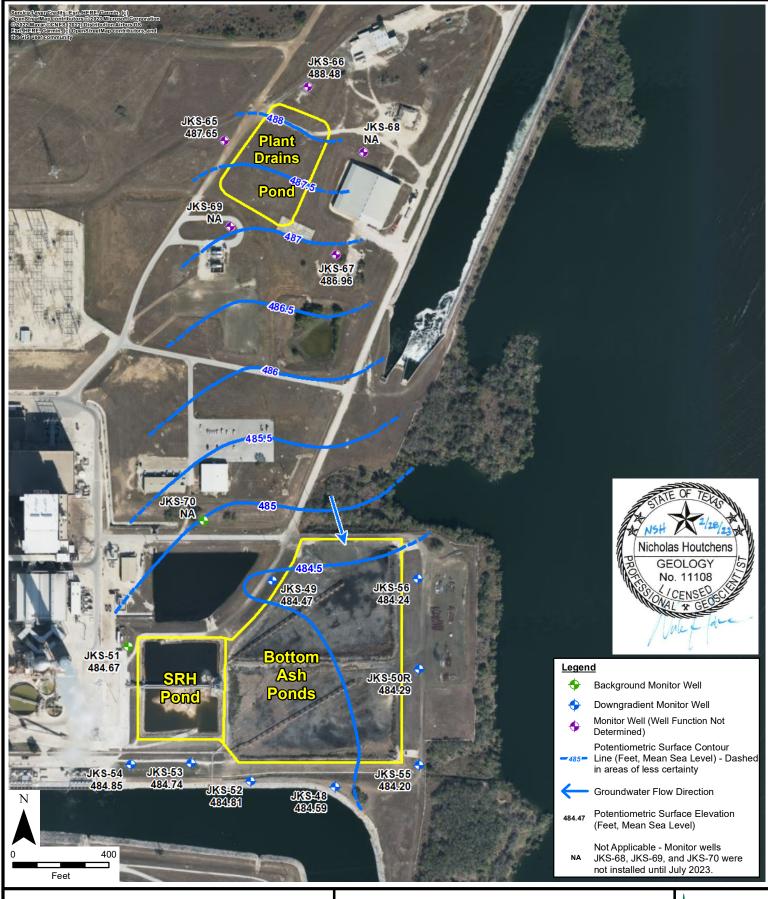
  X: Matrix Spike/Matrix Spike Duplicate
  recoveries were found to be outside of the laboratory control limits.

ERM Houston\0636109\A11729 2022 SRH Tbls.xlsx Page 5 of 5





# **Environmental Resources Management**


 DESIGN:
 WZ
 DRAWN:
 JWR
 CHKD.:
 WZ

 DATE:
 02/16/2023
 SCALE:
 AS SHOWN
 REVISION:
 1

 USCUSPRDGISTS/UDARIUS/Projects/k-C/CPS\_Energy/SanAntonio\_TX/MXD\
 661.0674/32 CPS/cb/w Well lose myd
 1

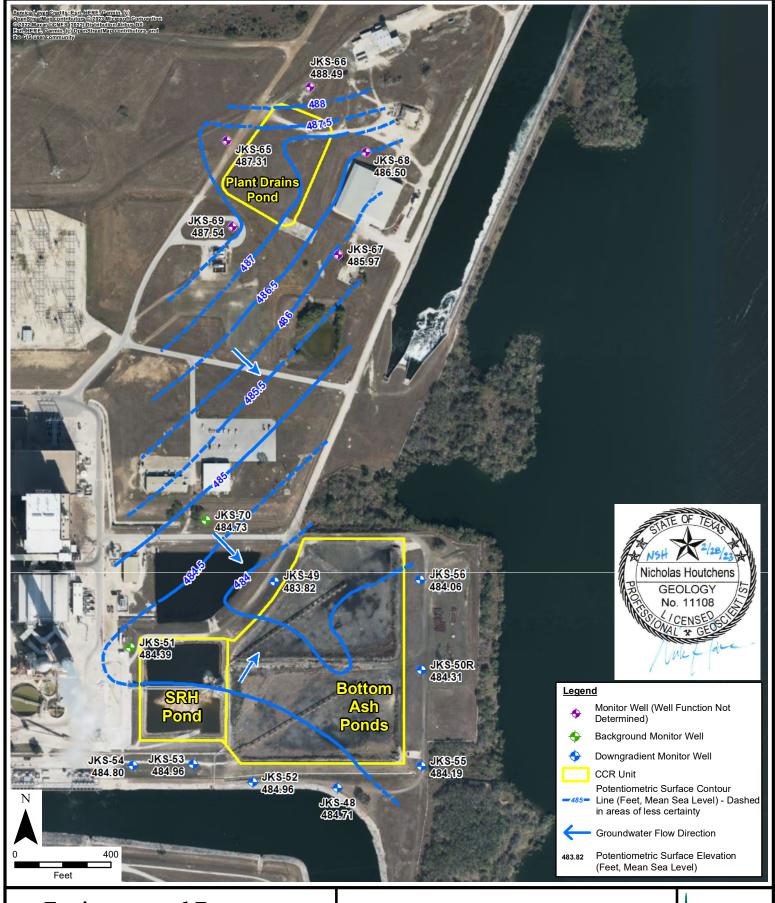
FIGURE 1
CCR WELL NETWORK LOCATION MAP
CPS Energy - Calaveras Power Station
San Antonio, Texas





## **Environmental Resources Management**

 DESIGN:
 NH
 DRAWN:
 LM
 CHKD.:
 WZ


 DATE:
 06/02/2023
 SCALE:
 AS SHOWN
 REVISION:
 0

 \(\USBDCFS02\Data\Houston\Projects\0503422\cdot CPS\) Energy Calaveras 2019 CCR Tasks. WZ\GIS\_CAD\MXD\2022gwmcFig2A\0638109\cdot CR\) SouthernPot. Apr2022.mxd
 Apr2022.mxd

POTENTIOMETRIC SURFACE MAP April 2022
Central and Southern CCR Units
CPS Energy - Calaveras Power Station
San Antonio, Texas

FIGURE 2A





## **Environmental Resources Management**

 DESIGN:
 NH
 DRAWN:
 LM
 CHKD.:
 WZ

 DATE:
 07/02/2023
 SCALE:
 AS SHOWN
 REVISION:
 0

 \USBDCFS02/DataHHoustoniProjects\0503422 CPS Energy Calaveras 2019 CCR
 SwzYGIS\_CADIMXD\02022gwmoFig2B 0636109
 CCR
 SouthermPot Oct2022.mxd

FIGURE 2B
POTENTIOMETRIC SURFACE MAP October 2022
Central and Southern CCR Units
CPS Energy - Calaveras Power Station
San Antonio, Texas



### **Laboratory Data Packages**

Appendix A

(Data Packages Available Upon Request)

## **Statistical Analysis Tables and Figures**

Appendix B

Appendix B - Table 1 Kruskal-Wallis Test Comparisons of Upgradient Wells Calaveras Power Station SRH Pond

| Analyte                | N  | N Detect | Percent<br>Detect | DF | statistic | p-value | Conclusion                | UPL Type  |
|------------------------|----|----------|-------------------|----|-----------|---------|---------------------------|-----------|
| Boron                  | 19 | 19       | 100.00%           | 1  | 2.7       | 0.1     | No Significant Difference | Interwell |
| Calcium                | 19 | 19       | 100.00%           | 1  | 2.7       | 0.1     | No Significant Difference | Interwell |
| Chloride               | 19 | 19       | 100.00%           | 1  | 2.7       | 0.1     | No Significant Difference | Interwell |
| Fluoride               | 19 | 16       | 84.21%            | 1  | 0.534     | 0.465   | No Significant Difference | Interwell |
| рН                     | 19 | 19       | 100.00%           | 1  | 2.7       | 0.1     | No Significant Difference | Interwell |
| Sulfate                | 19 | 19       | 100.00%           | 1  | 2.7       | 0.1     | No Significant Difference | Interwell |
| Total dissolved solids | 19 | 19       | 100.00%           | 1  | 2.71      | 0.0998  | No Significant Difference | Interwell |

#### Notes

Non-detects were substituted with a value of half the detection limit for calculations

N: number of data points

DF: degrees of freedom

statistic: Kruskal Wallis test statistic

p-value: P-values below 0.05 indicate that the median concentrations in the upgradient wells are significantly different from each other and the upgradient wells should not be pooled.

p-value: P-values equal or above 0.05 indicate that the median concentrations in the upgradient wells are not significantly different from each other and the upgradient wells can be pooled.

Page 1 0636109\DM\A11729

Appendix B - Table 2
Descriptive Statistics for Upgradient Wells
Calaveras Power Station
SRH Pond

| Analyte                | Well   | Units | N  | N Detect | Percent | Min ND | Max ND | Min Detect | Median | Mean  | Max Detect | SD    | CV         | Distribution |
|------------------------|--------|-------|----|----------|---------|--------|--------|------------|--------|-------|------------|-------|------------|--------------|
|                        |        |       |    |          | Detect  |        |        |            |        |       |            |       |            |              |
| Boron                  | Pooled | mg/L  | 19 | 19       | 100.00% |        |        | 0.316      | 0.517  | 0.538 | 0.711      | 0.106 | 0.19721095 | Normal       |
| Calcium                | Pooled | mg/L  | 19 | 19       | 100.00% |        |        | 47.7       | 292    | 273   | 362        | 73.9  | 0.2708514  | NDD          |
| Chloride               | Pooled | mg/L  | 19 | 19       | 100.00% |        |        | 116        | 447    | 445   | 620        | 120   | 0.2685545  | Normal       |
| Fluoride               | Pooled | mg/L  | 19 | 16       | 84.21%  | 0.009  | 0.048  | 0.224      | 0.305  | 0.296 | 0.534      | 0.145 | 0.4895237  | Normal       |
| pH                     | Pooled | SU    | 19 | 19       | 100.00% |        |        | 5.48       | 6.44   | 6.42  | 7.16       | 0.348 | 0.05425626 | NDD          |
| Sulfate                | Pooled | mg/L  | 19 | 19       | 100.00% |        |        | 83.3       | 354    | 353   | 503        | 89.1  | 0.25224967 | Normal       |
| Total dissolved solids | Pooled | mg/L  | 19 | 19       | 100.00% |        |        | 912        | 1650   | 1770  | 2720       | 480   | 0.27067827 | Normal       |

#### <u>Notes</u>

Non-detects were substituted with a value of half the detection limit for calculations

Well = Pooled, indicates that the summary statistics were produced for the pooled upgradient wells based on the Kruskal-Wallis test (Table 1).

SU: Standard units

N: number of data points

ND: Non-detect

SD: Standard Deviation

CV: Coefficient of Variation (standard deviation divided by the mean)

Page 2 0636109\DM\A11729

#### Appendix B - Table 3 Potential Outliers in Upgradient Wells Calaveras Power Station SRH Pond

| Well   | Sample                | Date       | Analyte | Units | Detect | Concentrati<br>on | UPL type  | Distribution | Statistical<br>Outlier | Visual<br>Outlier | Normal<br>Outlier | Log Statistical<br>Outlier | Log Visual<br>Outlier |   | Statistical and<br>Visual Outlier | Notes |
|--------|-----------------------|------------|---------|-------|--------|-------------------|-----------|--------------|------------------------|-------------------|-------------------|----------------------------|-----------------------|---|-----------------------------------|-------|
| JKS-51 | JKS-51-WG-20170725    | 07/25/2017 | pН      | SU    | TRUE   | 5.48              | Interwell | NDD          | X                      | Х                 | Х                 | X                          | Х                     | Х | 0                                 |       |
| JKS-51 | JKS-51-WG-20171010    | 10/10/2017 | рН      | SU    | TRUE   | 6.2               | Interwell | NDD          |                        | Х                 |                   |                            | Х                     |   |                                   |       |
| JKS-51 | JKS-51-WG-20191022-02 | 10/22/2019 | рН      | SU    | TRUE   | 5.73              | Interwell | NDD          | Х                      | Х                 | Х                 | Х                          | Х                     | Х | 0                                 |       |
| JKS-70 | JKS-70-WG-20221025-02 | 10/25/2022 | рН      | SU    | TRUE   | 7.16              | Interwell | NDD          | Х                      | Х                 | Х                 | Х                          | Х                     | Х | 0                                 |       |

#### Notes

NDD: No Discernible Distribution

SU: Standard units

Outlier tests were performed on detected data only.

Statistical outliers were determined using a Dixon's test for N < 25 and with Rosner's test for N > 25.

Visual outliers were identified if they fall above the confidence envelope on the QQ plot.

Data points were considered potential outliers if they were both statistical and visual outliers.

NDD wells had data points considered as potential outliers if they were either a normal or lognormal outlier.

[Blank] data distribution indicates that the well data did not have enough detected data points for outlier analysis.

Lognormally distributed data was first log-transformed before visual and statistical outlier tests were performed.

Normal data distribution indicates that the well data was directly used for statistical and visual outlier tests.

NDD indicates that both the untransformed and transformed data were examined with statistical and visual outlier tests.

'0' indicates that the data point was a statistical and visual outlier but was retained after review by the hydrogeologist.

Page 3 0636109\DM\A11729

Appendix B - Table 4
Mann Kendall Test for Trends in Upgradient Wells
Calaveras Power Station
SRH Pond

| Analyte                | UPL Type  | Well           | N  | Num<br>Detects | Percent<br>Detect | p-value | tau   | Conclusion       |
|------------------------|-----------|----------------|----|----------------|-------------------|---------|-------|------------------|
| Boron                  | Interwell | JKS-51, JKS-70 | 19 | 19             | 100.00%           | 0.141   | 0.246 | Stable, No Trend |
| Calcium                | Interwell | JKS-51, JKS-70 | 19 | 19             | 100.00%           | 0.447   | 0.135 | Stable, No Trend |
| Chloride               | Interwell | JKS-51, JKS-70 | 19 | 19             | 100.00%           | 0.0684  | 0.31  | Stable, No Trend |
| Fluoride               | Interwell | JKS-51, JKS-70 | 19 | 16             | 84.21%            | 0.123   | -0.26 | Stable, No Trend |
| рН                     | Interwell | JKS-51, JKS-70 | 19 | 19             | 100.00%           | 1       | 0     | Stable, No Trend |
| Sulfate                | Interwell | JKS-51, JKS-70 | 19 | 19             | 100.00%           | 0.0251  | 0.375 | Increasing Trend |
| Total dissolved solids | Interwell | JKS-51, JKS-70 | 19 | 19             | 100.00%           | 0.0496  | 0.33  | Increasing Trend |

#### **Notes**

Non-detects were substituted with a value of zero for trend calculations

N: number of data points

tau: Kendall's tau statistic

p-value: A two-sided p-value describing the probability of the H0 being true ( $\alpha$ =0.05)

Trend tests were performed on all upgradient data, only if the dataset met the minimum data quality criteria (ERM 2017).

Page 4 0636109\DM\A11729

Appendix B - Table 5 Calculated UPLs for Upgradient Datasets Calaveras Power Station SRH Pond

| Analyte                | UPL Type  | Trend            | Well           | N  | Num     | Percent | LPL | UPL    | Units | ND         | Transformation | Alpha | Method           | Final LPL | Final UPL | Notes |
|------------------------|-----------|------------------|----------------|----|---------|---------|-----|--------|-------|------------|----------------|-------|------------------|-----------|-----------|-------|
|                        |           |                  |                |    | Detects | Detects |     |        |       | adjustment |                |       |                  |           |           |       |
| Boron                  | Interwell | Stable, No Trend | JKS-51, JKS-70 | 19 | 19      | 100.00% |     | 0.726  | mg/L  |            |                |       | 95% UPL (t)      |           | Х         |       |
| Calcium                | Interwell | Stable, No Trend | JKS-51, JKS-70 | 19 | 19      | 100.00% |     | 404    | mg/L  |            |                |       | 95% UPL (t)      |           | X         |       |
| Chloride               | Interwell | Stable, No Trend | JKS-51, JKS-70 | 19 | 19      | 100.00% |     | 658    | mg/L  |            |                |       | 95% UPL (t)      |           | Х         |       |
| Fluoride               | Interwell | Stable, No Trend | JKS-51, JKS-70 | 19 | 16      | 84.21%  |     | 0.547  | mg/L  |            |                |       | 95% KM UPL (t)   |           | Х         |       |
| pH                     | Interwell | Stable, No Trend | JKS-51, JKS-70 | 19 | 19      | 100.00% | 5.4 | 8 7.16 | SU    |            |                |       | 95% UPL          | Х         | Х         |       |
| Sulfate                | Interwell | Increasing Trend | JKS-51, JKS-70 | 19 | 19      | 100.00% |     | 616    | mg/L  | None       | e No           |       | NP Detrended UPL |           | Х         |       |
| Total dissolved solids | Interwell | Increasing Trend | JKS-51, JKS-70 | 19 | 19      | 100.00% |     | 3180   | mg/L  | None       | e No           |       | NP Detrended UPL |           | Х         |       |

Non-detects were substituted with a value of half the detection limit for calculations

UPL: upper prediction limit

LPL: Lower prediction limit. These were only calculated for pH

UPLs were constructed with a site wide false positive rate of 0.1 and a 1 of 2 retesting.

UPLs were calculated using Sanitas Software.

SU: Standard units

NP: non parametric

RL: Reporting Limit

Intra: indicates an intrawell UPL was used

Inter: indicates an interwell UPL was used

In the case where multiple UPLs were calculated for an analyte, the maximum UPL was used as the final UPL.

In the case where multiple LPLs were calculated for an pH the minimum LPL was used as the final LPL.

0636109\DM\A11729 Page 5

Appendix B - Table 6 Comparisons of Downgradient Wells to UPLs Calaveras Power Station SRH Pond

| Analyte                | Well   | LPL  | UPL   | Units Recent<br>Date | Observatio<br>n | Qualifier | Obs > UPL | Notes                        | Mann<br>Kendall p-<br>value | Mann<br>Kendall tau | WRS p-<br>value | WRS<br>Conclusion | Exceed<br>Median | Overall Conclusion |
|------------------------|--------|------|-------|----------------------|-----------------|-----------|-----------|------------------------------|-----------------------------|---------------------|-----------------|-------------------|------------------|--------------------|
| Boron                  | JKS-52 |      | 0.726 | mg/L 10/25/2022      | 2.37            |           | Х         | Trend Test: Increasing Trend | 0.0338                      | 0.367               | <0.001          | ***               | Х                | Both Exceedance    |
| Boron                  | JKS-53 |      | 0.726 | mg/L 10/25/2022      | 1.59            |           | Х         | Trend Test: Stable, No Trend | 0.172                       | 0.238               | <0.001          | ***               | Х                | Both Exceedance    |
| Boron                  | JKS-54 |      | 0.726 | mg/L 10/25/2022      | 1.24            |           | Х         | Trend Test: Stable, No Trend | 0.939                       | 0.0134              | <0.001          | ***               | Х                | Both Exceedance    |
| Calcium                | JKS-52 |      | 404   | mg/L 10/25/2022      | 192             |           |           |                              |                             |                     | 1               | NS                |                  | No Exceedance      |
| Calcium                | JKS-53 |      | 404   | mg/L 10/25/2022      | 125             |           |           |                              |                             |                     | 1               | NS                |                  | No Exceedance      |
| Calcium                | JKS-54 |      | 404   | mg/L 10/25/2022      | 130             |           |           |                              |                             |                     | 1               | NS                |                  | No Exceedance      |
| Chloride               | JKS-52 |      | 658   | mg/L 10/25/2022      | 467             |           |           |                              |                             |                     | 1               | NS                |                  | No Exceedance      |
| Chloride               | JKS-53 |      | 658   | mg/L 10/25/2022      | 424             |           |           |                              |                             |                     | 1               | NS                |                  | No Exceedance      |
| Chloride               | JKS-54 |      | 658   | mg/L 10/25/2022      | 448             |           |           |                              |                             |                     | 1               | NS                |                  | No Exceedance      |
| Fluoride               | JKS-52 |      | 0.547 | mg/L 10/25/2022      | 0.686           |           | Х         | Trend Test: Stable, No Trend | 0.15                        | -0.249              | 0.0152          | *                 | Х                | Both Exceedance    |
| Fluoride               | JKS-53 |      | 0.547 | mg/L 10/25/2022      | 0.009           | ND        | )         |                              |                             |                     | 1               | NS                |                  | No Exceedance      |
| Fluoride               | JKS-54 |      | 0.547 | mg/L 10/25/2022      | 0.779           |           | Х         | Trend Test: Stable, No Trend | 0.544                       | -0.105              | 0.00602         | **                | Х                | Both Exceedance    |
| рН                     | JKS-52 | 5.48 | 7.16  | SU 10/25/2022        | 6.8             |           |           |                              |                             |                     | 1               | NS                |                  | No Exceedance      |
| рН                     | JKS-53 | 5.48 | 7.16  | SU 10/25/2022        | 6.72            |           |           |                              |                             |                     | 1               | NS                |                  | No Exceedance      |
| рН                     | JKS-54 | 5.48 | 7.16  | SU 10/25/2022        | 6.77            |           |           |                              |                             |                     | 1               | NS                |                  | No Exceedance      |
| Sulfate                | JKS-52 |      | 616   | mg/L 10/25/2022      | 319             |           |           |                              |                             |                     | 1               | NS                |                  | No Exceedance      |
| Sulfate                | JKS-53 |      | 616   | mg/L 10/25/2022      | 296             |           |           |                              |                             |                     | 1               | NS                |                  | No Exceedance      |
| Sulfate                | JKS-54 |      | 616   | mg/L 10/25/2022      | 403             |           |           | <u> </u>                     |                             |                     | 1               | NS                |                  | No Exceedance      |
| Total dissolved solids | JKS-52 |      | 3180  | mg/L 10/25/2022      | 1540            |           |           | <u> </u>                     |                             |                     | 1               | NS                |                  | No Exceedance      |
| Total dissolved solids | JKS-53 |      | 3180  | mg/L 10/25/2022      | 1640            |           |           | <u> </u>                     |                             |                     | 1               | NS                |                  | No Exceedance      |
| Total dissolved solids | JKS-54 |      | 3180  | mg/L 10/25/2022      | 1680            |           |           | ·                            |                             |                     | 1               | NS                |                  | No Exceedance      |

#### **Notes**

Non-detects were substituted with a value of zero for trend calculations

UPL: Upper Prediction Limit

ND: Not detected

SU: Standard units

tau: Kendall's tau statistic

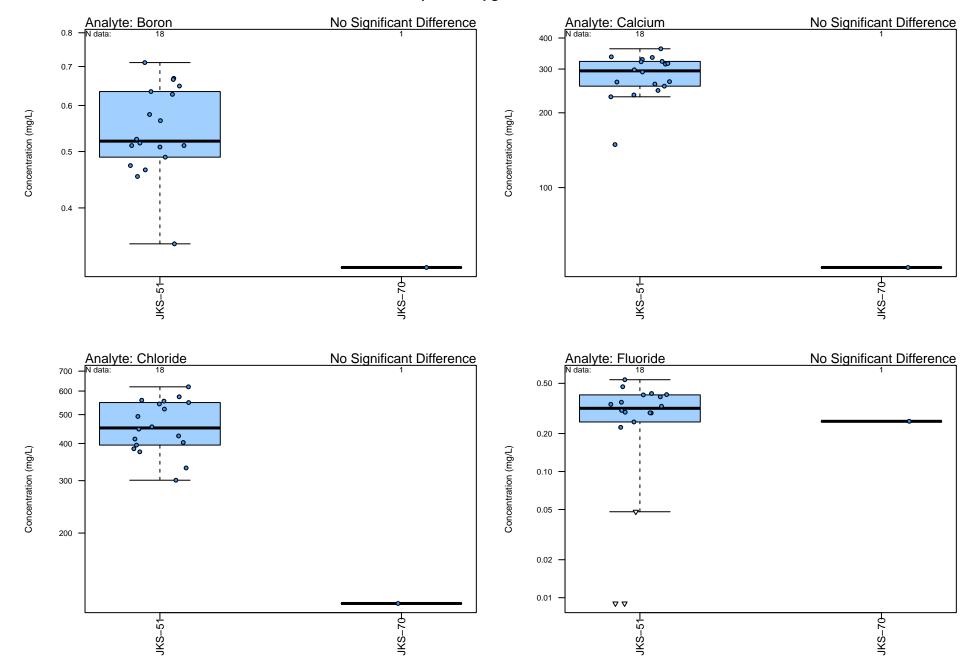
Obs > UCL: Exceed 'X' indicates that the most recent observed value is higher than the UPL (or out of range of the LPL and UPL in the case of pH.)

Obs > UCL: Exceed 'X0' indicates that the two most recent values are higher than the UPL, but the upgradient well is 100% ND.

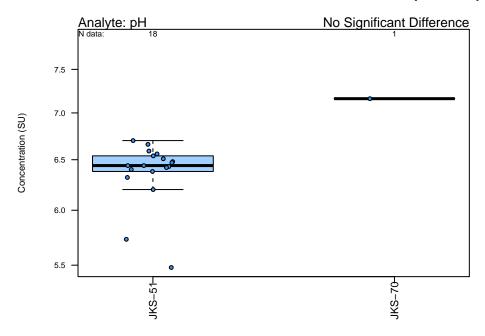
Obs > UCL: Exceed '0' indicated that the most recent observed value is higher than the UPL, but is not scored as an SSI due to Double Quantification Rule (ERM 2017).

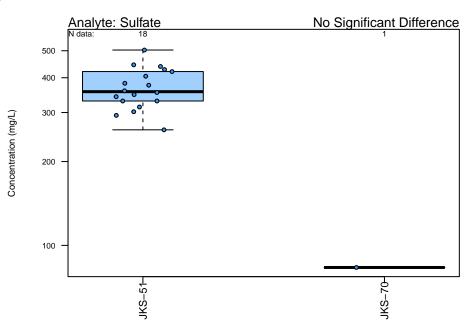
WRS: Wilcoxon Rank Sum test comparing if median of downgradient well is larger than the UPL (for pH, also checks if median is less than LPL)

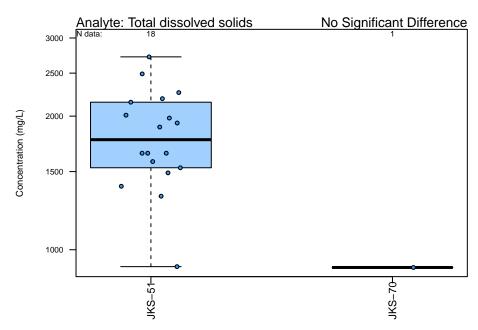
WRS p-value: A one-sided p-value describing the probability of the H0 (UPL/LPL) being true (a=0.05)


Overall: UPL Exceedance - most recent sampling event exceeds the UPL, but median of the well is not greater than UPL

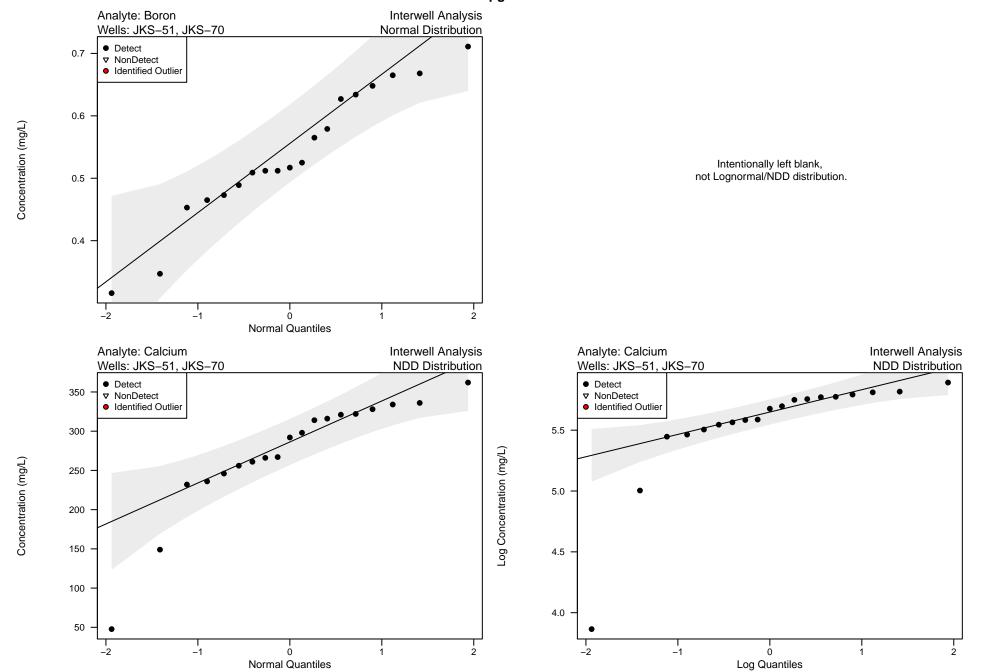
Overall: WRS Exceedance - most recent sampling event does not exceed the UPL, but median of the well is greater than UPL


Overall: Both Exceedance - most recent sampling event exceeds the UPL and median of the well is larger than the UPL

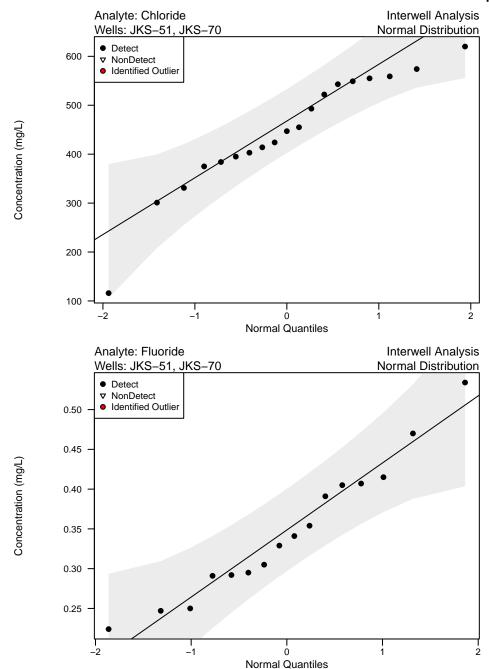

Page 6 0636109\DM\A11729


#### Appendix B – Figure 1 Unit: SRH Pond Boxplots of Upgradient Wells




### Appendix B – Figure 1 Unit: SRH Pond Boxplots of Upgradient Wells

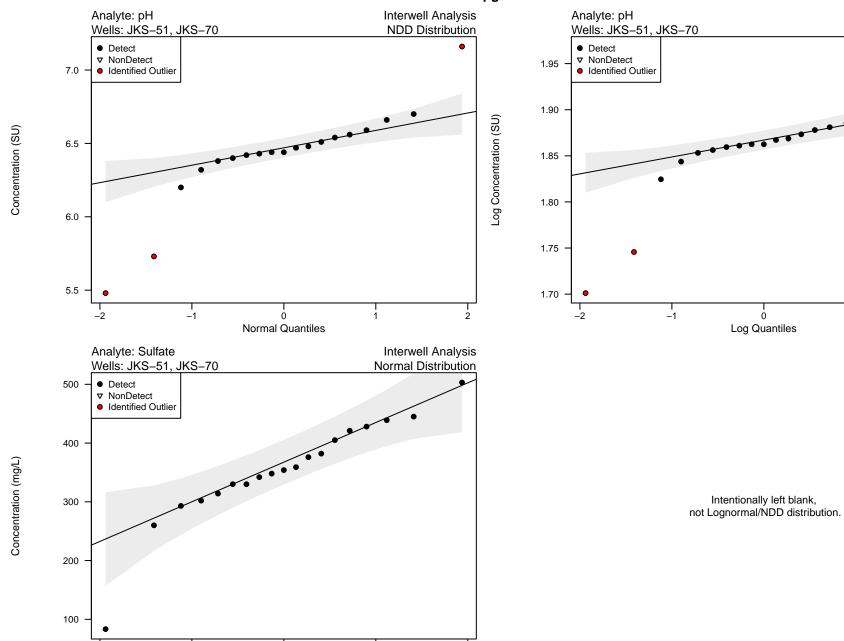







#### Appendix B – Figure 2 Unit: SRH Pond QQ Plots of Upgradient Wells

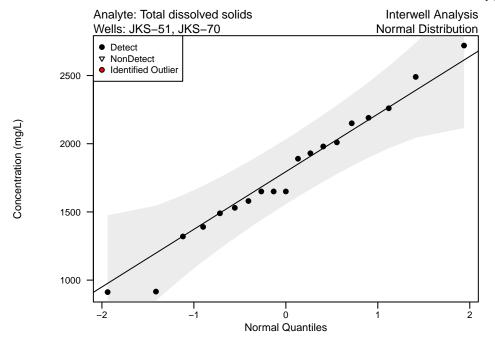



#### Appendix B – Figure 2 Unit: SRH Pond QQ Plots of Upgradient Wells



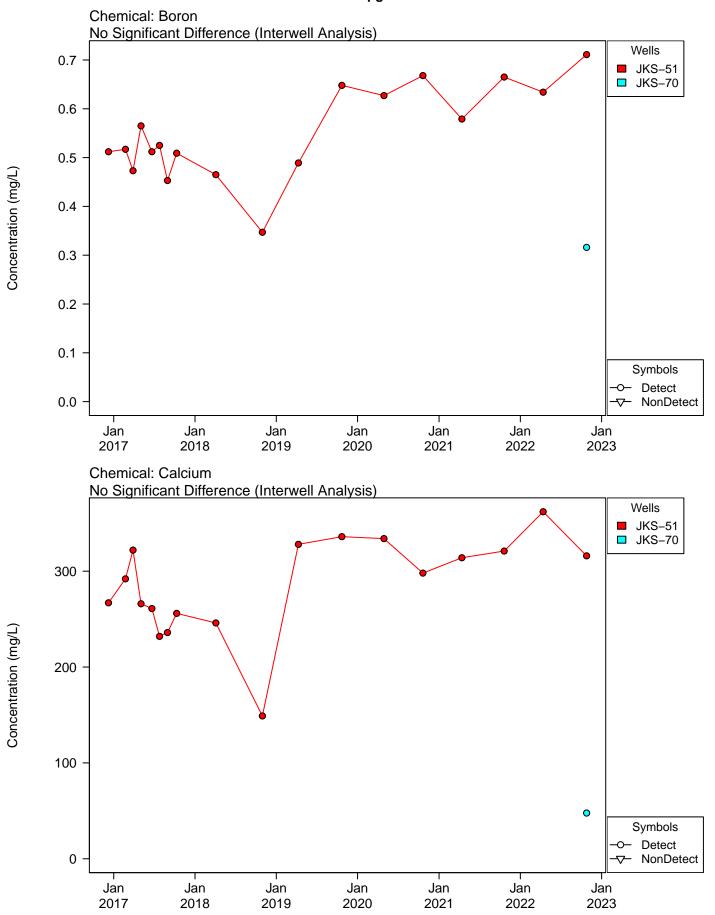
Intentionally left blank, not Lognormal/NDD distribution.

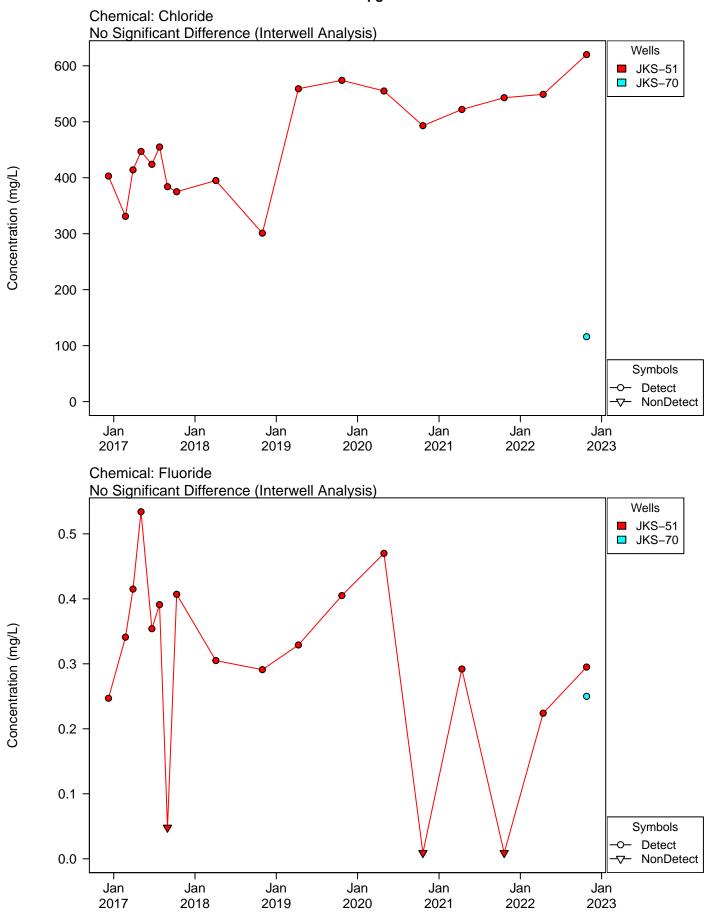
Intentionally left blank, not Lognormal/NDD distribution.

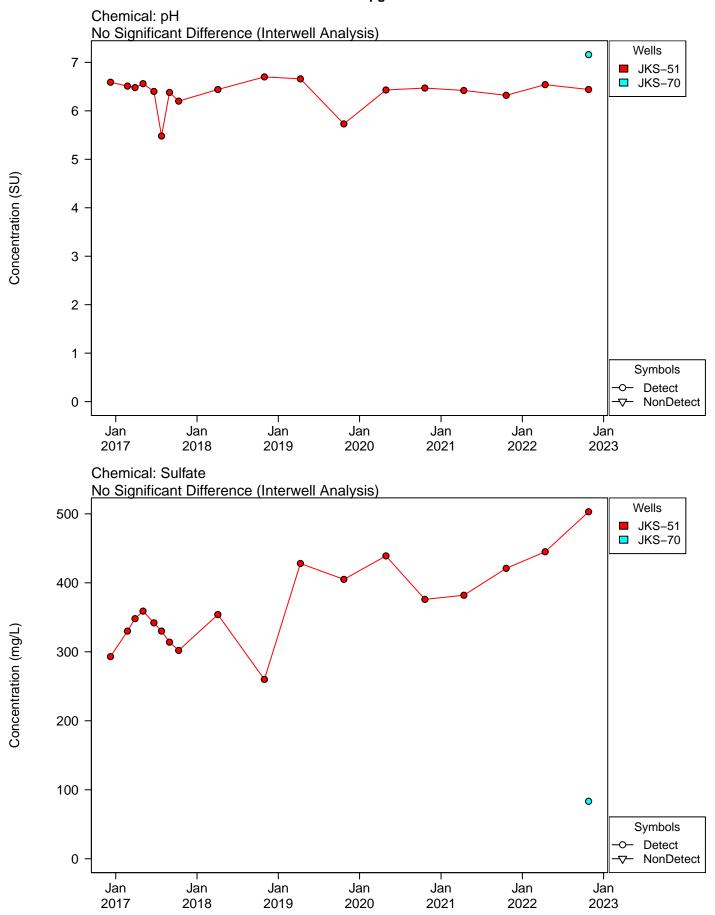

#### Appendix B - Figure 2 Unit: SRH Pond **QQ Plots of Upgradient Wells**

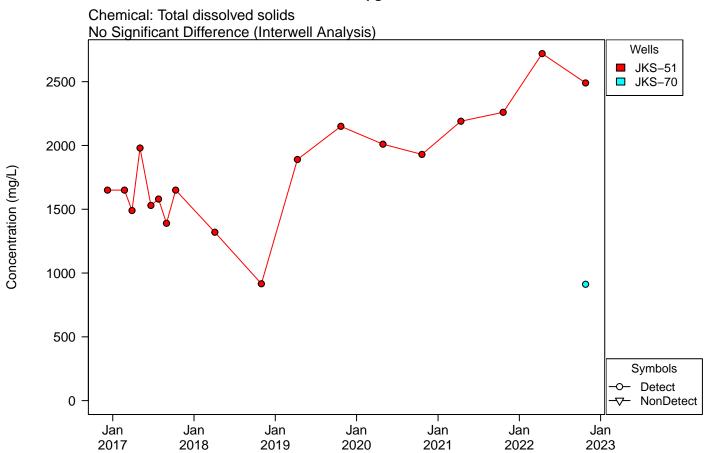


Ò **Normal Quantiles** 





#### Appendix B – Figure 2 Unit: SRH Pond QQ Plots of Upgradient Wells





Intentionally left blank, not Lognormal/NDD distribution.

Page 12 0636109\DM\A11729





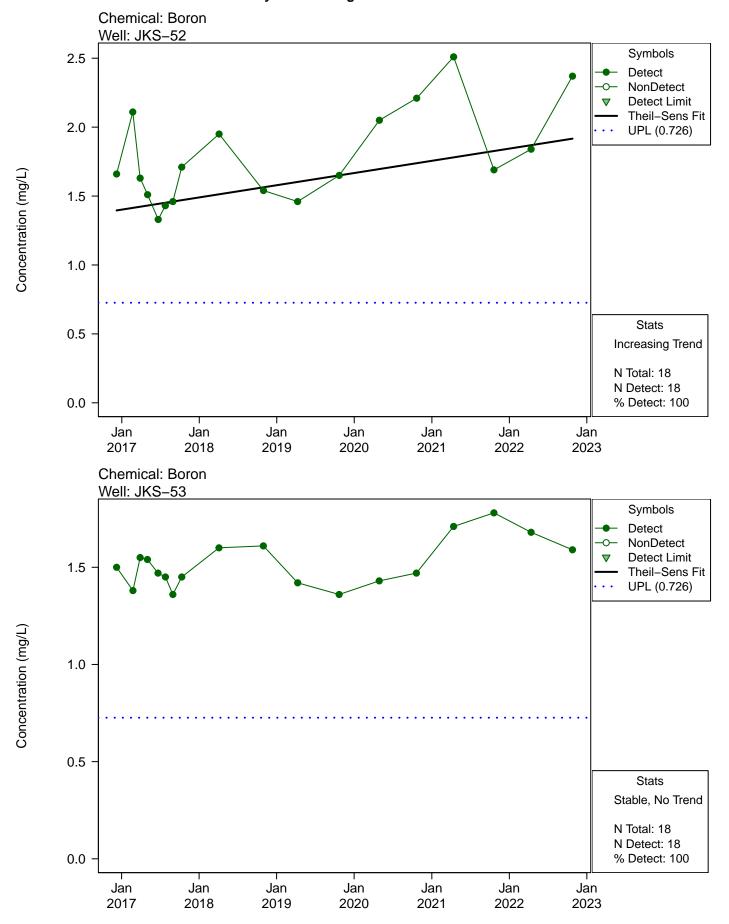




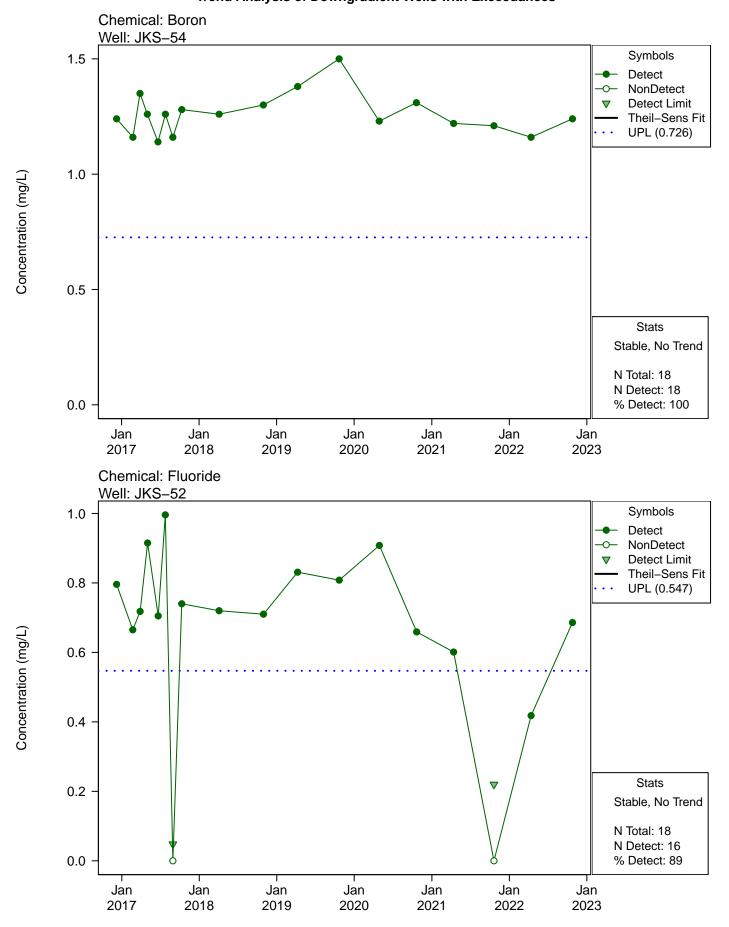
2020

2021

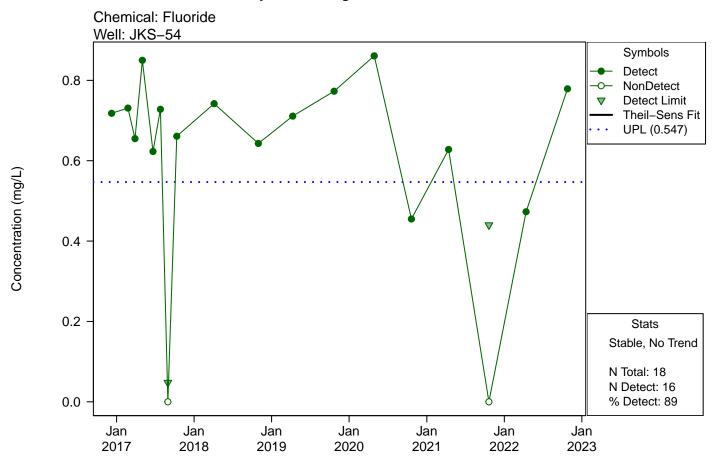
2022


2023

2018


2019

Page 16 0636109\DM\A11729


# Appendix B – Figure 4 Unit: SRH Pond Trend Analysis of Downgradient Wells with Exceedances



# Appendix B – Figure 4 Unit: SRH Pond Trend Analysis of Downgradient Wells with Exceedances



# Appendix B – Figure 4 Unit: SRH Pond Trend Analysis of Downgradient Wells with Exceedances



Page 19 0636109\DM\A11729

# **April 2022 Groundwater Sampling Results**

Appendix C



CityCentre Four 840 West Sam Houston Parkway North, Suite 600 Houston, Texas 77024 Telephone: +281 600 1000 Fax: +281 520 4625

www.erm.com

September 20, 2022

Mr. Michael Malone CPS Energy 500 McCullough Avenue San Antonio, Texas 78215

Reference: 0636109

Subject: April 2022 Groundwater Sampling Event

Calaveras Power Station CCR Units

San Antonio, Texas

#### **Introduction**

Title 40 Code of Federal Regulations, Part 257, (40 CFR §257) Subpart D [a.k.a. Coal Combustion Residual (CCR) Rule] was published in the Federal Register in April 2015 and became effective in October 2015. One of the many requirements of the CCR Rule was for CPS Energy to determine if there are impacts to groundwater from the surface impoundments [Evaporation Pond (EP), Bottom Ash Ponds (BAPs), and Sludge Recycling Holding (SRH) Pond] and the landfill [Fly Ash Landfill (FAL)] that contain CCR at the Calaveras Power Station.

In the initial 2017 Annual Groundwater Monitoring and Corrective Action Report for each CCR unit, the downgradient monitoring well results from the October 2016 sampling event were compared to Upper Prediction Limits (UPLs) and Lower Prediction Limits (LPLs). UPLs and LPLs were calculated in the Annual Groundwater Monitoring and Corrective Action Reports for the purpose of determining a potential statistically significant increase (SSI) over background levels. In the subsequent 2018, 2019, 2020, and 2021 Annual Groundwater Monitoring and Corrective Action Reports for each CCR unit, the downgradient monitoring well results from the October 2017, October 2018, October 2019, and October 2021 sampling events were compared to updated UPLs and LPLs. These updated UPLs and LPLs were recalculated in the respective Annual Groundwater Monitoring and Corrective Action Reports using the additional data collected from the previous year. The April 2022 groundwater sample results were compared to the updated UPLs and LPLs and the evaluations of the sample results indicated a potential SSI for a limited number of constituents from the EP, FAL, and BAPs. No potential SSIs were identified for any constituents from the SRH Pond.

According to the CCR Rule [§257.94(e)], if the owner or operator of a CCR unit determines there is a SSI over background levels for one or more Appendix III constituents, the owner or operator may demonstrate that a source other than the CCR unit caused the SSI over background levels or that the SSI resulted from error in sampling, analysis, statistical evaluation or natural variation in groundwater quality. The CCR Rule also indicates that the owner or operator must complete the written demonstration within 90 days of detecting an SSI over the background levels. If a successful demonstration is completed within the 90-day period, the owner or operator may continue with a detection monitoring program.



**September 20, 2022** Reference: 0636109

Page 2 of 3

To address the potential SSIs identified in the previous four *Annual Groundwater Monitoring and Corrective Action Reports*, CPS Energy prepared five *Written Demonstrations – Responses to Potential Statistically Significant Increases*<sup>1</sup> (dated 4 April 2018; 27 February 2019; 27 April 2020; 18 June 2021; and 26 April 2022, respectively). Based on the evidence provided in the *Written/Alternative Source Demonstrations*, no SSIs over background levels were determined for any of the CPS Energy CCR units (EP, FAL, BAPs, and SRH Pond) and therefore, CPS Energy continued with a detection monitoring program that would include semiannual sampling.

#### Sampling Events Summary

The first semiannual groundwater sampling event for 2022 was conducted on April 13 through April 14, 2022. The sampling event included the collection of water level measurements and groundwater samples from all the background and downgradient monitoring wells in the CCR monitoring program. Monitoring wells were gauged and then sampled by CPS Energy using low flow sampling techniques during the sampling event. The groundwater samples were analyzed for Appendix III constituents.

For each CCR unit, the downgradient monitoring well results from the April 2022 sampling event were compared to the updated UPLs and LPLs recalculated in their respective 2021 Annual Groundwater Monitoring and Corrective Action Report. The April 2022 groundwater sample results for the downgradient monitoring wells in each CCR unit are summarized in Attachment 1.

Although the evaluations of the April 2022 groundwater sample results indicate a potential SSI for a limited number of constituents, the constituents associated with the potential SSIs are the same constituents, detected at similar concentrations, which were previously identified in one or all of the *Written/ Alternative Source Demonstrations*. The evaluations of the April 2022 groundwater sample results with potential SSIs are summarized below.

**EP** – The constituents associated with potential SSIs include boron in JKS-61; fluoride in JKS-36; and pH in JKS-36, JKS-61, and JKS-62. As previously presented in the *Written/ Alternative Source Demonstrations*, the concentrations of boron, fluoride, and pH appear to reflect natural variation in groundwater quality in the vicinity of the CCR unit. The reported April 2022 concentrations were within the range of naturally occurring concentrations identified in the *Written/ Alternative Source Demonstrations*.

**FAL** – The constituents associated with potential SSIs include pH in JKS-31 and JKS-46. As previously presented in the *Written/ Alternative Source Demonstrations*, the concentrations of pH appear to reflect natural variation in groundwater quality in the vicinity of the CCR unit. The reported April 2022 concentrations were within the range of naturally occurring concentrations identified in the *Written/ Alternative Source Demonstrations*.

**BAPs** – The constituents associated with potential SSIs include boron in JKS-50R and JKS-56. As previously presented in the *Written/ Alternative Source Demonstrations*, the concentrations of boron appear to reflect natural variation in groundwater quality in the vicinity of the CCR unit. The

<sup>&</sup>lt;sup>1</sup> The term 'Written Demonstration' was historically used for a document that provided responses to potential SSIs. Starting with the 26 April 2022 document, the term 'Alternative Source Demonstration' was used for these types of documents.



**September 20, 2022** Reference: 0636109

Page 3 of 3

reported April 2022 concentrations were within the range of naturally occurring concentrations identified in the *Written/ Alternative Source Demonstrations*.

#### **Conclusions**

Based on the April 2022 groundwater sample results and the evidence provided in one or all of the *Written/ Alternative Source Demonstrations*, no SSIs over background levels have been determined for any of the CPS Energy CCR units (EP, FAL, BAPs, and SRH Pond) and therefore, CPS Energy should continue with a detection monitoring program. The second semiannual sampling event should be performed in October 2022.

We appreciate the opportunity to work with you on this project. Please contact me if you should have any questions.

Sincerely,

Environmental Resources Management Southwest, Inc.

Nicholas Houtchens Senior Geologist ATTACHMENT 1 APRIL 2022 GROUNDWATER SAMPLE RESULTS

### April 2022 Groundwater Sample Results CCR Unit: Evaporation Pond CPS Energy Calaveras Power Station San Antonio, TX

|                        |       |          | CCR Unit         | EP           | EP           | EP           |
|------------------------|-------|----------|------------------|--------------|--------------|--------------|
|                        |       |          | Well Designation | Downgradient | Downgradient | Downgradient |
|                        |       |          | Well ID          | JKS-36       | JKS-61       | JKS-62       |
|                        |       |          | Sample Date      | 4/13/2022    | 4/13/2022    | 4/13/2022    |
|                        |       |          | Sample Type Code | N            | N            | N            |
| Constituent            | Units | 2021     | 2021             |              |              |              |
|                        |       | LPL - EP | UPL - EP         |              |              |              |
| Boron                  | mg/L  |          | 1.80             | 0.556        | 1.83         | 0.609        |
| Calcium                | mg/L  |          | 1,410            | 260          | 144          |              |
| Chloride               | mg/L  |          | 3,320            | 295          | 248          | 313          |
| Fluoride               | mg/L  |          | 0.364            | 1.71         | 0.363        | 0.328        |
| pH, Field              | SU    | 4.58     | 6.26             | 6.78         | 6.83         | 6.89         |
| Sulfate                | mg/L  |          | 2,120            | 769          | 420          | 199          |
| Total Dissolved Solids | mg/L  |          | 9,620            | 2,200        | 1,410        | 1,160        |

#### NOTES:

Shaded results either exceed of the Upper Prediction Limit (UPL) or are below the Lower Prediction Limit (LPL) for this CCR unit. Sample Type Code: N - Normal

### April 2022 Groundwater Sample Results CCR Unit: Fly Ash Landfill CPS Energy Calaveras Power Station San Antonio, TX

|                               |       |             | CCR Unit         | FAL          | FAL          | FAL          | FAL          | FAL          |
|-------------------------------|-------|-------------|------------------|--------------|--------------|--------------|--------------|--------------|
|                               |       |             | Well Designation | Downgradient | Downgradient | Downgradient | Downgradient | Downgradient |
|                               |       |             | Well ID          | JKS-31       | JKS-33       | JKS-46       | JKS-46       | JKS-60       |
|                               |       | Sample Date | 4/13/2022        | 4/13/2022    | 4/13/2022    | 4/13/2022    | 4/13/2022    |              |
| Sample Type Code              |       |             |                  | N            | N            | N            | FD           | N            |
| Constituent                   | Units | 2021        | 2021             |              |              |              |              |              |
| Constituent                   |       | LPL - FAL   | UPL - FAL        |              |              |              |              |              |
| Boron                         | mg/L  |             | 5.77             | 0.460        | 1.02         | 0.736        | 0.765        | 0.573        |
| Calcium                       | mg/L  | -           | 794              | 339          | 499          | 181          | 196          | 438          |
| Chloride                      | mg/L  |             | 1,850            | 525          | 731          | 14.8         | 15.2         | 324          |
| Fluoride                      | mg/L  | -           | 4.29             | 0.018 U      | 0.018 U      | 2.55         | 3.09         | 0.018 U      |
| pH, Field                     | SU    | 4.87        | 6.73             | 4.04         | 6.55         | 3.45         | 3.45         |              |
| Sulfate                       | mg/L  |             | 7,810            | 1,400        | 1,560        | 1,370        | 1,290        | 1,200        |
| <b>Total Dissolved Solids</b> | mg/L  |             | 18,800           | 3,170        | 3,960        | 1,870        | 1,890        | 2,680        |

#### NOTES:

Shaded results either exceed of the Upper Prediction Limit (UPL) or are below the Lower Prediction Limit (LPL) for this CCR unit. Sample Type Code: N - Normal; FD - Field Duplicate

U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).

#### April 2022 Groundwater Sample Results CCR Unit: Bottom Ash Ponds CPS Energy Calaveras Power Station San Antonio, TX

|                               |        | CCR Unit         | BAP          | BAP          | BAP          | BAP          | BAP          | BAP          |       |
|-------------------------------|--------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|-------|
|                               |        | Well Designation | Downgradient | Downgradient | Downgradient | Downgradient | Downgradient | Downgradient |       |
|                               |        | Well ID          | JKS-48       | JKS-50R      | JKS-52       | JKS-52       | JKS-55       | JKS-56       |       |
|                               |        | Sample Date      | 4/13/2022    | 4/14/2022    | 4/13/2022    | 4/13/2022    | 4/14/2022    | 4/13/2022    |       |
| Sample Type Code              |        |                  |              | N            | N            | N            | FD           | N            | Ν     |
| Constituent                   | Units  | 2021             | 2021         |              |              |              |              |              |       |
| Constituent                   | Ullits | LPL - BAP        | UPL - BAP    |              |              |              |              |              |       |
| Boron                         | mg/L   | -                | 2.63         | 2.23         | 6.28         | 1.84         | 1.81         | 0.778        | 3.83  |
| Calcium                       | mg/L   | -                | 386          | 124          | 128          | 161          | 178          | 131          | 110   |
| Chloride                      | mg/L   | -                | 638          | 481          | 70.0         | 381          | 378          | 443          | 100   |
| Fluoride                      | mg/L   |                  | 0.894        | 0.810        | 0.284        | 0.418        | 0.491        | 0.557        | 0.367 |
| pH, Field                     | SU     | 5.48             | 7.31         | 6.94         | 6.66         | 6.97         | 6.97         | 6.84         | 6.81  |
| Sulfate                       | mg/L   | -                | 485          | 199          | 189          | 299          | 296          | 178          | 121   |
| <b>Total Dissolved Solids</b> | mg/L   |                  | 2,500        | 1,480        | 887          | 1,470        | 1,520        | 1,370        | 838   |

#### NOTES:

Shaded results either exceed of the Upper Prediction Limit (UPL) or are below the Lower Prediction Limit (LPL) for this CCR unit. Sample Type Code: N - Normal; FD - Field Duplicate

### April 2022 Groundwater Sample Results CCR Unit: SRH Pond CPS Energy Calaveras Power Station San Antonio, TX

|                        |       |           | CCR Unit         | SRH Pond     | SRH Pond     | SRH Pond     | SRH Pond     |
|------------------------|-------|-----------|------------------|--------------|--------------|--------------|--------------|
|                        |       |           | Well Designation | Downgradient | Downgradient | Downgradient | Downgradient |
|                        |       |           | Well ID          | JKS-52       | JKS-52       | JKS-53       | JKS-54       |
|                        |       |           | Sample Date      |              | 4/13/2022    | 4/13/2022    | 4/13/2022    |
|                        |       |           | Sample Type Code | N            | FD           | N            | N            |
| Constituent            | Units | 2021      | 2021             |              |              |              |              |
| Constituent            |       | LPL - SRH | UPL - SRH        |              |              |              |              |
| Boron                  | mg/L  |           | 2.64             | 1.84         | 1.81         | 1.68         | 1.16         |
| Calcium                | mg/L  | -         | 377              | 161          | 178          | 115          | 149          |
| Chloride               | mg/L  |           | 640              | 381          | 378          | 403          | 472          |
| Fluoride               | mg/L  |           | 0.894            | 0.418        | 0.491        | 0.263        | 0.473        |
| pH, Field              | SU    | 5.48      | 7.31             | 6.97         | 6.97         | 6.82         | 6.84         |
| Sulfate                | mg/L  |           | 487              | 299          | 296          | 274          | 446          |
| Total Dissolved Solids | mg/L  |           | 2,440            | 1,470        | 1,520        | 1,330        | 1,680        |

#### NOTES:

Shaded results either exceed of the Upper Prediction Limit (UPL) or are below the Lower Prediction Limit (LPL) for this CCR unit. Sample Type Code: N - Normal; FD - Field Duplicate