

MODELING, ASSUMPTIONS & SCENARIOS

Presented by:

John Kosub

Senior Director, Energy Supply & Market Operations

Kevin Pollo VP, Energy Supply & Market Operations

June 16, 2022

Informational Update

AGENDA

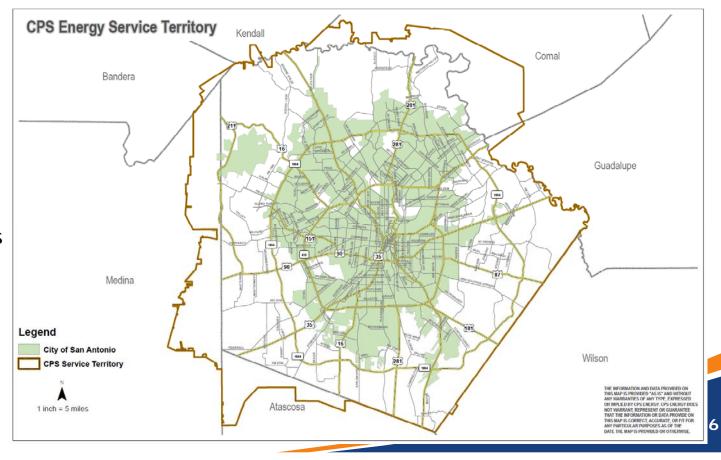
- INPUTS & ASSUMPTIONS INTRODUCTION
- SERVICE TERRITORY
- ELECTRIC LOAD FORECAST
- GENERATION PERFORMANCE
- PORTFOLIO OPTIONS

INPUTS & ASSUMPTIONS INTRODUCTION

PROPOSED MODELING PROCESS

- Assumptions
 - Customer usage, Energy Efficiency, Generation cost and performance, generation additions, generation retirement schedule, fuel prices, market prices, financial assumptions, etc.
- Modeling
 - Each portfolio to be run through our production cost model over a 25-year forecast horizon and compared to a baseline portfolio
 - Uncertainty analysis included
 - Favorable projects to be run through our financial model to assess financial metrics and bill impact
- Points of Consideration
 - o Affordability
 - o Reliability/Resiliency
 - o Environmental Responsibility
 - Workforce Impacts
 - o Risk

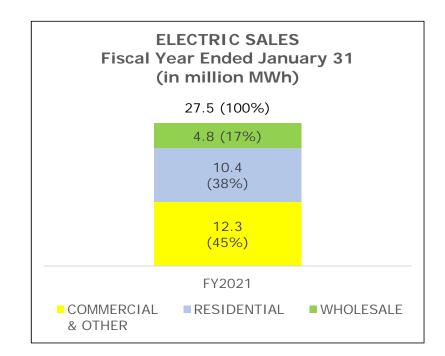
SERVICE TERRITORY



CPS ENERGY SERVICE TERRITORY

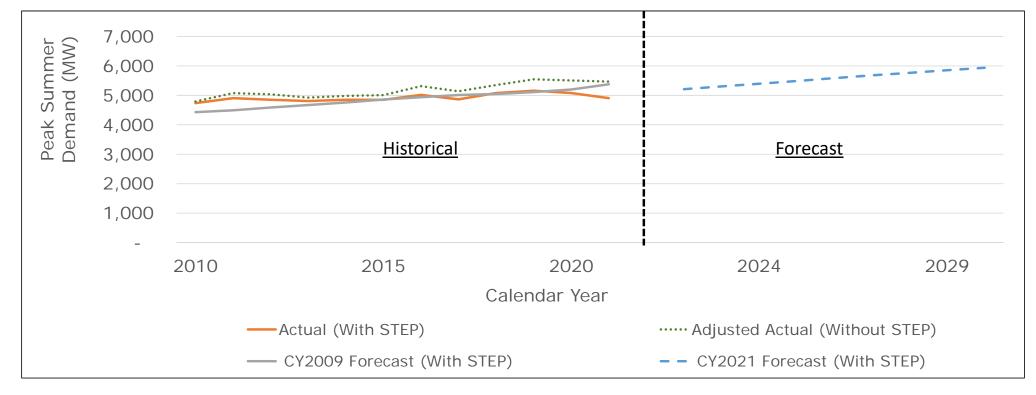
CPS Energy Service Territory is within the San Antonio Metropolitan Statistical Area.

- The majority of CPS Energy service territory is aligned with Bexar County.
- It includes portions of in the surrounding counties of Atascosa, Bandera, Comal, Guadalupe, Kendall, Medina, & Wilson.



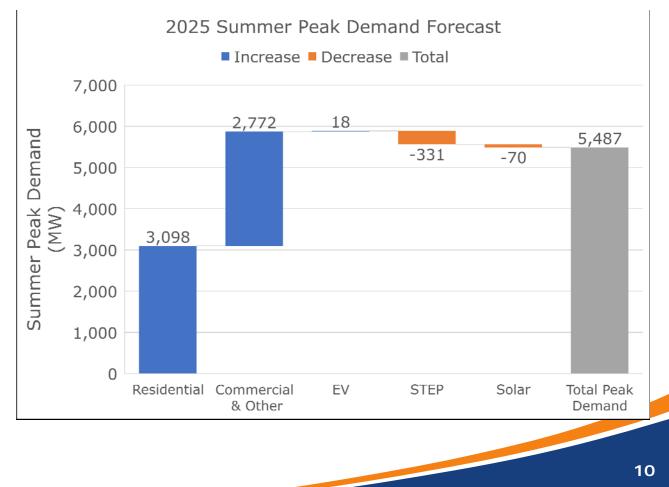
ELECTRIC LOAD FORECAST

LOAD FORECAST PURPOSE


- Forecast electric retail sales (MWh) for revenue planning
- Forecast peak demand (MW) for power generation long-range capacity planning
- 25-year, hourly forecast using regression model
- Industry leading model with expert technical & analytical support

We install generation capacity to meet our community's obligations. Any excess generation is offered to the ERCOT wholesale market.

PEAK DEMAND (MW) TRENDS

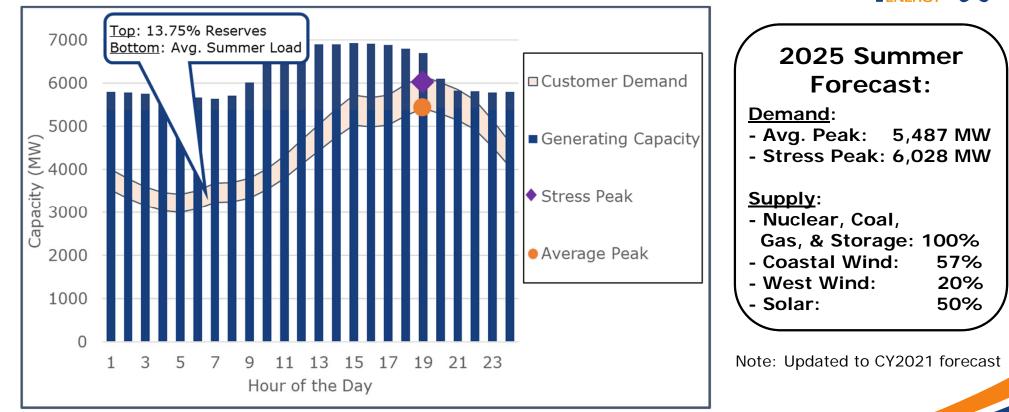


Historical summer peak demand has been trending near the forecast. About 95 MW per year of customer growth is expected in the forecast.

PEAK DEMAND (MW) KEY FORECAST INPUTS

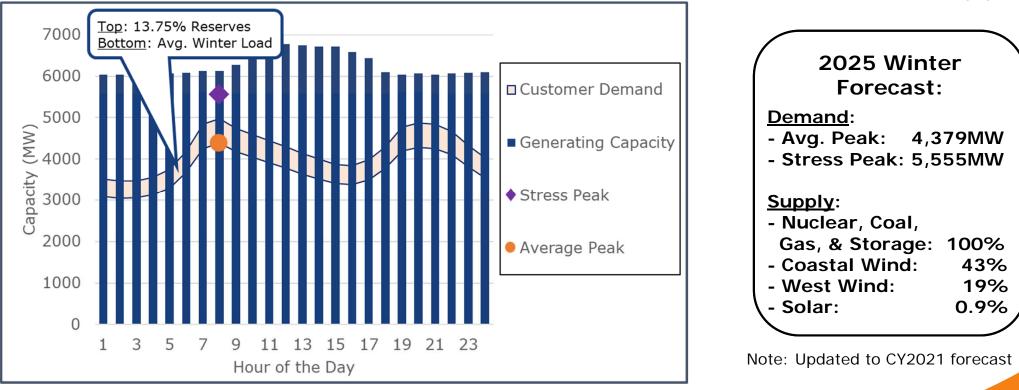
- Key inputs: Differing customer classes, Electric Vehicles (EV), STEP, and Rooftop Solar
- Hourly forecast captures seasonal and time of day patterns
- Captures summer & winter peak capacity (MW) needs
- Uncertainty in peak capacity (MW) forecast is covered with reserve margin

WEATHER


	Typical Weather	Extreme Weather				
Deg F	Average 15 years	Max/Min 30+ years (1990+)				
Month	Temperature	Temperature				
January	32	17				
February	30	9				
March	81	21				
April	93	99				
Мау	98	103				
June	100	107				
July	100	106				
August	102	109				
September	98	111				
October	94	99				
November	89	89				
December	30	16				

- The forecast captures climate change trends using 15 years of historical data
- We track extreme weather trends & ensure our planned reserve margin can cover extremes

When evaluating system peak capacity needs, we consider differing weather conditions: Typical Weather and Extreme Weather.


SUMMER DAY 2025 PROJECTION – DEMAND & SUPPLY

All resources are utilized to meet summer peak demand.

12

WINTER DAY 2025 PROJECTION – DEMAND & SUPPLY

All resources are utilized to meet extreme winter peak demand while average winter peak is less challenging.

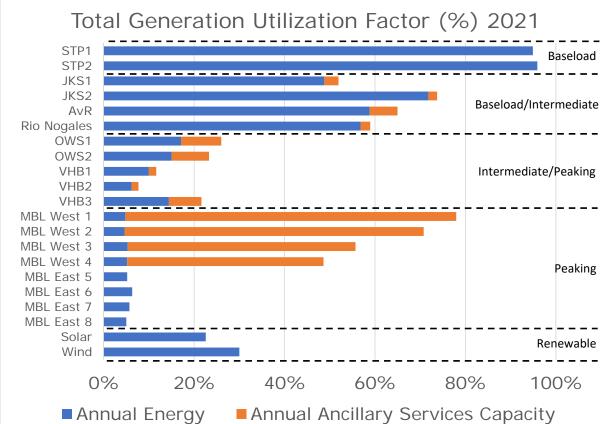
CD

ELECTRIC VEHICLES

- Although EVs are currently a relatively small segment of the forecast, we are closely monitoring the growth rate
- EV forecast inputs:
 - Light Duty EV growth¹
 - At home Time of Use (TOU) and non-TOU charging profiles
 - Workplace & public charging
 - Mid & Heavy EV growth
 - Some quantifiable growth per known commercial customers plans
 - More to be coming soon²: Trucks, Busses, other

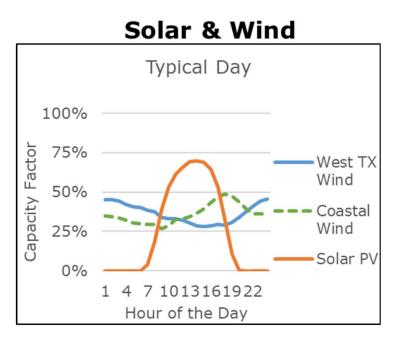
Electric Vehicle (EV) adoption is captured in our forecast process.

1. Supplied by Electric Power Research Institute (EPRI)


2. Internally estimated from Alamo Area Council of Governments (AACOG) data & International Council of Clean Transportation data

GENERATION PERFORMANCE

TOTAL GENERATION UTILIZATION 2021



Total Generation Utilization Factor: Percentage of total capacity used for energy and ancillary services

Adding Energy & Ancillary Services provides the total utilization picture.

RENEWABLE GENERATION EMERGING OPPORTUNITIES

Туре	Summer Peak Contribution (% of Max. Capacity)				
Nuclear, Coal, Gas, &	100%				
Storage	100%				
West Wind	20%				
Coastal Wind	57%				
Solar	50%				
Landfill Gas	76%				

Туре	Total (MW)	Total Summer (MW)		
Wind	944.1	339.6		
Solar	550.6	275.5		
Storage	10.0	10.0		
Landfill Gas	13.8	10.5		
	1519	635.6		

- Average peak contribution percentages used for long-range planning.
- Daily weather forecasts used for next-day wind and solar generation predictions.
- Real-time weather conditions determine actual generation available

17

Our long-term and short-term planning processes incorporate the unique operating profiles for renewable resources.

PORTFOLIO OPTIONS

PORTFOLIO MODELING* POTENTIAL RETIREMENT DATES

Unit	MW	2022	2023	2024	2025	2026	2027	2028	2029	2030
South Texas 1	517			-				-	-	
South Texas 2	512									
Spruce 1	560									
Spruce 2	785									
Arthur Von Rosenberg	518									
Rio Nogales	777									
Sommers 1	420									
Sommers 2	410									
Braunig 1	217									
Braunig 2	230									
Braunig 3	412									
Milton Lee Peaking 1-8	376									

* Possible Spruce 2 gas conversion & all retirement dates are preliminary & for discussion purposes only.

Over 3,000 MWs of new generation will be required to meet customer needs by 2030.

PORTFOLIO MODELING* PROPOSED STARTING POINT

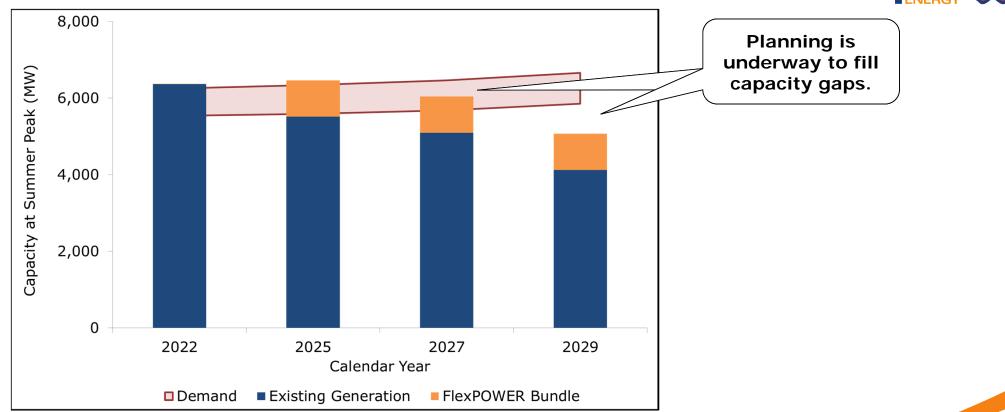
Possible Retirements:

o Braunig 1: Mar 2025
o Braunig 2: Mar 2025
o Braunig 3: Mar 2025
o Sommers 1: Mar 2027
o Spruce 1: Dec 2028
o Sommers 2: Mar 2029

Planned Additions:

o Solar: 2024 to 2025

o Storage: 2024


- o Firming: 2022
- Sommers 1 replacement
- o Spruce 1 replacement
- o Sommers 2 replacement
- Load growth capacity

<u>Other:</u>

- Possible conversion of Spruce 2 from coal to gas: Dec 2027
- Potential inclusion of Geothermal, Geomechanical Pumped Storage
- * Possible Spruce 2 gas conversion & all retirement dates are preliminary & for discussion purposes only.
- * Our power generation plan update will define the resource types to use for the additions highlighted in grey.

We will work with RAC, CAC, & the community for feedback to model the scenarios and bring back the recommendations to the Board by December.

CAPACITY PLANNING WE MUST CAREFULLY COVER S.A.'S NEEDS

Our generation planning strategy is to provide sufficient capacity to protect our customers from exposure to high market prices.

POWER GENERATION PORTFOLIO POTENTIAL FUTURE LOOK

	2021	2025	2030	
	Renewables, Nuclear, 22% 14% Coal, 18% Gas, 46%	Renewables, Nuclear, 33% 13% Coal, 17% Gas, 38%	Renewables, Nuclear, 28% 28% Gas, 25% Needed, 27% 9% Spruce 2,	
Nameplate Capacity:	7,350 MW	8,050 MW	TBD	
Capacity at Peak:	6,377 MW	6,833 MW	TBD	
Demand:	5,159 MW	5,487 MW	5,937 MW	
	Current view	 Key assumptions: Add 900 MW of solar Add 50 MW of battery storage Add 500 MW of gas-fired firming capacity Retire three Braunig gas steam units 	 Key assumptions: Retire Sommers 1 Retire Sommers 2 Retire Spruce 1 Retire or convert Spruce 2 Additional capacity needed to meet obligations	

Our generation planning process will identify the types of resources to be added over the next several years.

22

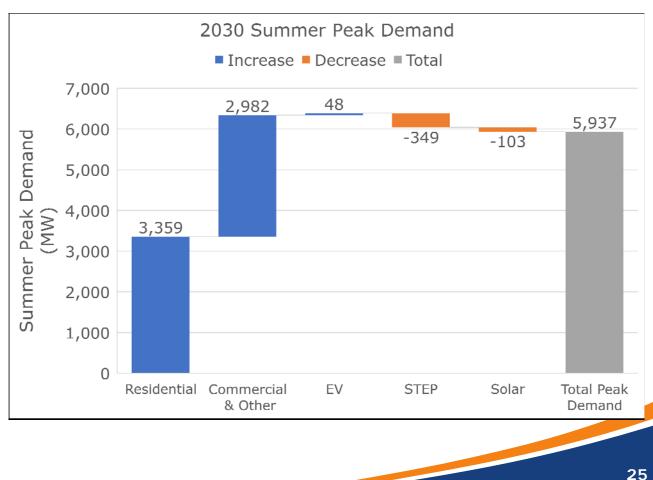
PORTFOLIO MODELING PROPOSED PORTFOLIO OPTIONS

Portfolio	Aspects		
Renewable	Wind, solar, & otherStorage		
Natural Gas	Combined cycleReciprocating internal combustion engine		
Blended	 Economic maximum renewables: Wind, solar, & other Economic storage Natural Gas: Combined cycle & Reciprocating internal combustion engine 		

Notes:

- 1. Spruce 2 converted to gas in all of the above portfolios
- 2. Each portfolio assessed with and without "Save Now".
- 3. Emerging technology assumptions to be included.

Capacity is needed to address customer growth and unit retirements (Sommers 1 & 2, Spruce 1).


APPENDIX

PEAK DEMAND (MW) KEY FORECAST INPUTS

- Key inputs: Differing customer classes, Electric Vehicles (EV), STEP, and Rooftop Solar
- Hourly forecast captures seasonal and time of day patterns
- Captures summer & winter peak capacity (MW) needs
- Uncertainty in peak capacity (MW) forecast is covered with reserve margin

