

Review of Power Supply Study

> RAC of CPS Energy December 6, 2022

## Agenda

### Areas of Review

- Modeling Approach
- Load Forecast
- Existing Resources
- ERCOT Market Modeling
- New Technology Assessment
- Commodity Price Forecast
- Risk Analysis
- Results



# **Study Approach**

# Typical Power Supply Study Approach

Primary goal of an integrated power supply study is to provide an economic evaluation of a utility's power supply portfolio over both short-term and long-term planning horizons.

Need to focus on short-term decisions that position utility for long-term success.

## Typical Power Supply Study Approach



## Typical Power Supply Study Approach



## Typical Analyses in Addition to Reference Scenario

| Scenarios                   | Adjustments to elements that will not be in the control of utility                               |
|-----------------------------|--------------------------------------------------------------------------------------------------|
| Strategies/<br>Portfolios   | Adjustments to elements that will be in the control of the utility                               |
| Sensitivities               | Stressing one input variable to determine<br>its impact on power supply costs                    |
| Distribution of<br>Outcomes | Use of stochastically-developed pricing and cost inputs to generate a range of possible outcomes |

### Current Study Approach

| Scenarios                                                                                                                                                                                                      | Portfolios                                                                                                                                                                            | Sensitivities                                                               | Distribution of<br>Outcomes |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------|
| Reference Scenario plus 3<br>other scenarios developed<br>by assuming different<br>inputs for key scenario<br>variables (gas prices,<br>carbon prices, technology<br>costs, demand and<br>ERCOT market design) | 9 different portfolios<br>developed assuming<br>different types of allowable<br>generating resources and<br>different combinations of<br>retirements/conversions of<br>existing units | 4 different sensitivities will<br>be performed on the<br>Reference Scenario | Not performed               |

1898 & Co. Opinion: The method and assumptions used in the study are reasonable and similar to what is typically expected in such studies

# Load Forecast

### Load Forecast | Approach

### **Multivariate Regression**

Find and quantify variables that correlate to or influence sales/growth patterns

Project variables to predict future sales/growth

### Bottom-Up Approach

Start with component (i.e. Commercial & Industrial Sales) and sub-component (i.e. Residential Bills, Residential UPC) forecasts

Combine components into an aggregated forecast

Use aggregated sales forecast to develop peak forecast

1898 & Co. Opinion: The method and assumptions used by CPS Energy is reasonable and similar to what is typically expected for an IRP study

### Load Forecast | Differences



## Load Forecast | Future Considerations

- Include building electrification impact
- Include Inflation Reduction Act (IRA) and other external program impacts
- Residential Electric Vehicle (EV) Time of Use (TOU) and DC Fast-Charger load shapes need to analyzed further
- Energy Efficiency (EE) & Demand Response (DR) programs savings seems conservative

## Other Aspects | RAC Q's

### Are the population estimates high enough?

- Population growth continues the historical trend of approximately 2 percent annual growth
- This falls in line with the growth of "fast-growing cities" in the US

### Are EV peak demand estimates reasonable?

- EV Peak demand estimates do appear reasonable and have similar expected growth patterns with other cities in the area
- Load shapes appear reasonable and about as expected, except for Residential TOU and some DC Fast-Charging
- Similar studies in the area show growth rate to be around 20 percent year over year

### Are the peak demand/load estimates reasonable?

- System forecast estimates appear reasonable
  - Approximate annual load growth of 1.5 percent for baseline forecast
  - Approximate annual load growth of 2 percent considering additional components

# **Existing Resources**

### **Existing Resources**

### **BASE ASSUMPTIONS**



**Operations** 





**Unit Retirements** 



**Capital Investments** 

## **Key Assumptions**

- Capacity (MW) •
- Forced Outage Rates (FOR)
- Nonfuel VOM (\$/MWh)
- **PPA** price if applicable (\$/MWh)
- Heat rates (if applicable) •
- **Preventive maintenance**
- **Other dispatch parameters** •
- Expected Capacity Factor (CF) for wind and solar (%)
- **Emission rates (lbs/mmbtu)**
- **Committed unit retirements/conversions**

1898 & Co. Opinion: The assumptions used in the study are reasonable to what is expected for technology of similar age and size



# **ERCOT Market Design**

## **Key Assumptions**

- How was the regional ERCOT market configured
- Source of data
- Load assumptions
- Unit retirements
- ERCOT interconnection queue and committed resources
- New generic technology assumptions
- Effective Load Carrying Capability (ELCC) for intermittent resources
- Reserve margin
- Expected Capacity Factor (CF) for wind and solar (%)
- Emission rates (lbs/mmbtu)

1898 & Co. Opinion: The approach to ERCOT market modeling and the assumptions used in the study are reasonable and similar to what is expected for technology of age and size



# New Technology Assessment

### New Technologies Assessment

### **BASE ASSUMPTIONS**







Technology Maturity

### New Technology Cost Forecasts – Renewables & Short-Term Storage

| Technology              | CPS Energy Approach                                                                                                                                                                                                                                                                                                                                                                 | Result                                                                                                                   | Assessment of CPS Energy<br>Approach & Result          |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Wind                    |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                          |                                                        |
| Solar                   | <ul> <li>Publicly available forward price curves and<br/>overnight capital costs from reputable<br/>sources were combined to create Low,<br/>Base, and High forward cost forecasts.</li> </ul>                                                                                                                                                                                      | Overnight Capital Costs generally                                                                                        | <ul> <li>Forecasting approach is reasonable</li> </ul> |
| Li-Ion<br>(2 to 8 hour) | <ul> <li>overnight capital costs from reputable sources were combined to create Low, Base, and High forward cost forecasts.</li> <li>Technology specific modeling parameters (O&amp;M, physical characteristics, etc.) were sourced from reputable sources.</li> <li>Overnight Capital Costs generally decline in real dollars over the next decade before leveling off.</li> </ul> | <ul> <li>Base cost curves are used in the<br/>Reference Scenario and reflect a<br/>reasonable basis for study</li> </ul> |                                                        |
| Geothermal              |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                          |                                                        |

### New Technology Cost Forecasts Gas, Nuclear, Hydrogen

| Technology                                  | CPS Energy Approach                                                                                                                                                                                                                                                                        | Result                                                                                                       | Assessment of CPS Energy<br>Approach & Result                                                                   |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Traditional Gas<br>(CC, CT, Aero &<br>RICE) | <ul> <li>Publicly available data from reputable sources were combined to create a forward cost forecast.</li> <li>Technology specific modeling parameters (O&amp;M, physical characteristics, etc.) were sourced from reputable sources.</li> </ul>                                        | <ul> <li>Overnight Capital Costs generally<br/>decline in real dollars over the study<br/>period.</li> </ul> | Approach is typical and reasonable                                                                              |
| Hydrogen CT                                 | <ul> <li>Hydrogen technology costs remain same across all scenarios</li> <li>Publicly available forward price curves and overnight capital costs from reputable sources</li> <li>New technology with cost uncertainties</li> </ul>                                                         | <ul> <li>Overnight Capital Costs generally<br/>decline in real dollars over the study<br/>period.</li> </ul> | <ul> <li>Forecast source is reputable</li> <li>Technology not considered viable<br/>until after 2030</li> </ul> |
| Nuclear SMR                                 | <ul> <li>Technology costs remain same across all scenarios except the VMA scenario where the costs are assumed to be higher</li> <li>Publicly available forward price curves and overnight capital costs from reputable sources</li> <li>New technology with cost uncertainties</li> </ul> | <ul> <li>Overnight Capital Costs generally<br/>decline in real dollars over the study<br/>period.</li> </ul> | <ul> <li>Forecast source is reputable</li> <li>Technology not considered viable<br/>until after 2030</li> </ul> |

# Commodity Price Forecasts

# **Commodity Price Forecasts**

| Commodity<br>Price                     | CPS Energy Approach                                                                                                                                                                                  | Result                                                                                                                                                 | Assessment of CPS Energy<br>Approach & Result                                                                                                                                          |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coal Delivered<br>(\$/MMBtu)           | <ul> <li>Coal supply and rail transportation<br/>contract forecast</li> <li>Forward pricing for spot purchases</li> <li>3<sup>rd</sup> party forecast beyond contract and<br/>forwards</li> </ul>    | <ul> <li>Forecasted prices generally flat in<br/>real \$'s with increases based on<br/>general inflation</li> </ul>                                    | <ul> <li>Approach is typical</li> <li>Reputable source for price<br/>forecasts</li> <li>Flat forecasted pricing in real terms<br/>is appropriate give decreasing<br/>demand</li> </ul> |
| Natural Gas<br>Delivered<br>(\$/MMBtu) | <ul> <li>3<sup>rd</sup> party forecast of Henry Hub</li> <li>Basis forecast</li> <li>Transportation forecast</li> <li>Hedging costs and fixed transport costs<br/>added "post-processing"</li> </ul> | <ul> <li>NG prices reflect current high<br/>forward pricing for 2023</li> <li>Forecasted prices reflect average<br/>annual changes of ~1.8%</li> </ul> | <ul> <li>Forecast source is reputable</li> <li>Currently evaluating info on basis,<br/>transport and hedging costs</li> </ul>                                                          |
| Uranium<br>(\$/MMBtu)                  | Internal CPS Energy forecast                                                                                                                                                                         | Fairly flat pricing in real terms                                                                                                                      | Forecast is similar to public<br>forecast from NREL                                                                                                                                    |
| Carbon Dioxide<br>Cost (\$/ton)        | <ul> <li>Forecast from previous year is maintained</li> </ul>                                                                                                                                        | <ul> <li>Pricing starts 2027 at modest levels<br/>(\$5/ton) and almost doubles for<br/>2028, rises to ~\$51/ton by 2046</li> </ul>                     | <ul> <li>May conflict with IRA assumptions,<br/>unduly penalize fossil units</li> </ul>                                                                                                |

# **Risk Analysis**

### **Risk Analysis Overview**

### Scenario Design Considerations

CRA and CPS Energy are evaluating major themes in the energy market that could inform scenario design. The table below provides a preliminary view of scenario design.

|            | ERCOT Scenario    |                                        | Commodity Prices                 | CO <sub>2</sub><br>Carbon Policies       | Technology Costs                          | Demand                         | ERCOT Market<br>Design Change                                | Inp |
|------------|-------------------|----------------------------------------|----------------------------------|------------------------------------------|-------------------------------------------|--------------------------------|--------------------------------------------------------------|-----|
| CPS Energy |                   | Reference<br>Scenario<br>(REF)         | Baseline                         | Baseline                                 | Consensus                                 | Baseline                       | Confirmed changes<br>only                                    |     |
|            | Car               | bon-Based<br>Economy<br>(CBE)          | Low                              | No Price                                 | Consensus                                 | High driven by low prices      | Confirmed changes<br>only                                    |     |
| Scenarios  | CARBON<br>NEUTRAL | Net Zero<br>Carbon<br>Economy<br>(NZE) | Low due to electrification drive | High carbon price                        | Fast decline                              | High driven by electrification | Capacity market<br>launched &<br>seasonal reserve<br>margins |     |
|            |                   | Volatile<br>Market<br>(VMA)            | High                             | No price to alleviate inflation pressure | Slow decline due to<br>trade restrictions | Low due to high energy prices  | Confirmed changes<br>only                                    |     |
|            | 13                |                                        |                                  |                                          |                                           | CR                             | A Charles River<br>Associates                                |     |



Focused on CRA's assignment of inputs to CPS Energy Scenarios

### **Risk Analysis Overview**

| Forecasted Item     | CPS Energy<br>Approach  | Result                                | Assessment of CPS Energy<br>Approach & Results                                                                   |
|---------------------|-------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Natural Gas Prices  | Lineartainty defined by | Captures EIA's                        | Agree with capturing EIA's highest<br>and lowest scenario prices                                                 |
| Coal Prices         | EIA scenario forecasts  | highest and lowest<br>scenario prices | Growth to the CPS Energy scenario<br>should consider EIA scenario<br>inflation that corresponds to low<br>growth |
| Carbon Dioxide Cost | Same                    | Zero                                  | Much Higher                                                                                                      |
| Demand              | Same                    | Slightly Higher Much Higher           |                                                                                                                  |
| Technology Costs    | Same                    | Same                                  | Lower                                                                                                            |

### Risk Analysis | Natural Gas Prices in 2047

CPS Energy Scenarios include EIA's highest and lowest scenario prices, which is good.

Other than the highest and lowest priced scenarios, EIA scenario prices are similar to EIA's reference case.

| EIA Scenario                  | CPS Energy Scenario     | Natural Gas Henry Hub<br>Pricing (\$/MMBtu) |         |  |
|-------------------------------|-------------------------|---------------------------------------------|---------|--|
|                               |                         | Real                                        | Nominal |  |
| n/a                           | Reference               | \$3.37                                      | \$5.67  |  |
| High oil and gas supply       | Carbon-based Economy    | \$2.52                                      | \$4.69  |  |
| Low oil price                 | n/a                     | \$3.52                                      | \$5.99  |  |
| High economic growth          | n/a                     | \$3.83                                      | \$6.17  |  |
| Low renewables cost           | n/a                     | \$3.47                                      | \$6.24  |  |
| Reference case                | n/a                     | \$3.60                                      | \$6.47  |  |
| High renewables cost          | n/a                     | \$3.80                                      | \$6.85  |  |
| No Interstate Pipeline Builds | n/a                     | \$3.93                                      | \$7.08  |  |
| Low economic growth           | Net Zero Carbon Economy | \$3.40                                      | \$7.98  |  |
| High oil price                | n/a                     | \$3.69                                      | \$8.64  |  |
| Low oil and gas supply        | Volatile Market         | \$6.56                                      | \$11.07 |  |

# Additional Assumptions and Results Review



### Load Forecast for Other Scenarios & Sensitivities

- Additional scenarios compared against the Reference scenario
- NZE Scenario, Enhanced STEP, and Scaled-back STEP sensitivities adjust component forecasts used in the Reference scenario
- Extreme Weather sensitivity, CBE and VMA scenario forecasts adjust the reference case results by a derived factor
- Scenario forecast results fall in-line with expectations



## Load Forecast for Other Scenarios & Sensitivities

Annual Peak Demand (GW)



### Load Forecast for Other Scenarios & Sensitivities

### Annual Peak Growth Rate

| Year | Reference<br>Case | Enhanced<br>STEP | VMA   | Extreme<br>Weather | СВЕ   | Scaled STEP | NZE   |
|------|-------------------|------------------|-------|--------------------|-------|-------------|-------|
|      |                   |                  |       |                    |       |             |       |
| 2023 | 1.98%             | 2.02%            | 0.86% | 1.98%              | 2.39% | 2.05%       | 2.33% |
| 2024 | 2.06%             | 2.00%            | 1.17% | 2.06%              | 2.36% | 2.05%       | 2.25% |
| 2025 | 2.22%             | 2.13%            | 1.44% | 2.22%              | 2.56% | 2.21%       | 2.54% |
| 2026 | 1.93%             | 1.77%            | 1.47% | 1.93%              | 2.32% | 1.93%       | 2.33% |
| 2027 | 2.19%             | 1.88%            | 2.02% | 2.19%              | 2.43% | 2.22%       | 2.71% |
| 2028 | 1.82%             | 1.16%            | 1.77% | 1.82%              | 2.05% | 2.44%       | 2.49% |
| 2029 | 1.58%             | 1.04%            | 1.54% | 1.58%              | 1.71% | 2.01%       | 2.36% |
| 2030 | 1.84%             | 1.33%            | 1.84% | 7.74%              | 1.87% | 2.29%       | 2.93% |
| 2031 | 1.79%             | 1.26%            | 1.79% | -3.79%             | 1.81% | 2.23%       | 2.96% |
| 2032 | 1.66%             | 1.17%            | 1.74% | 1.66%              | 1.67% | 2.07%       | 2.65% |
| 2033 | 1.52%             | 1.02%            | 1.68% | 1.52%              | 1.59% | 1.91%       | 2.41% |
| 2034 | 2.06%             | 1.60%            | 2.09% | 2.06%              | 2.07% | 2.43%       | 2.95% |
| 2035 | 2.09%             | 1.62%            | 2.15% | 2.09%              | 2.12% | 2.40%       | 3.09% |
| 2036 | 2.51%             | 2.22%            | 2.52% | 2.51%              | 2.56% | 2.78%       | 3.97% |
| 2037 | 2.20%             | 1.94%            | 2.02% | 2.20%              | 2.13% | 2.47%       | 3.22% |
| 2038 | 2.14%             | 1.95%            | 1.95% | 2.14%              | 2.09% | 2.40%       | 2.75% |
| 2039 | 1.99%             | 1.86%            | 1.85% | 1.99%              | 1.99% | 2.21%       | 2.60% |
| 2040 | 2.25%             | 2.21%            | 2.11% | 2.25%              | 2.26% | 2.45%       | 3.14% |
| 2041 | 2.38%             | 2.62%            | 2.32% | 2.38%              | 2.44% | 2.55%       | 3.78% |
| 2042 | 2.70%             | 2.95%            | 2.66% | 2.70%              | 2.76% | 2.54%       | 3.78% |
| 2043 | 2.06%             | 2.42%            | 2.10% | 2.06%              | 2.18% | 1.94%       | 2.81% |
| 2044 | 1.07%             | 1.01%            | 0.91% | 1.07%              | 1.15% | 1.31%       | 1.01% |
| 2045 | 2.02%             | 2.28%            | 1.90% | 2.02%              | 2.10% | 1.76%       | 3.13% |
| 2046 | 2.19%             | 2.48%            | 1.99% | 2.19%              | 2.35% | 1.86%       | 3.51% |
| 2047 | 2.88%             | 3.11%            | 2.94% | 2.88%              | 3.27% | 2.41%       | 2.20% |
| 2048 | 3.14%             | 3.28%            | 3.05% | 3.14%              | 3.38% | 2.90%       | 3.97% |
| 2049 | 1.29%             | 1.39%            | 1.21% | 1.29%              | 1.37% | 1.13%       | 1.06% |
| 2050 | 1.28%             | 1.47%            | 1.16% | 1.28%              | 1.40% | 1.33%       | 3.01% |
| CAGR | 2.03%             | 1.89%            | 1.90% | 2.03%              | 2.15% | 2.16%       | 2.80% |

### **Key Results**

- Expansion plan across portfolios
- Unit level information
- Portfolio generation mix
- Matching outputs to input assumptions
- Reserve margin
- Unit retirements
- Expected Capacity Factor (CF) for resource types
- Total emissions
- Fuel costs
- O&M costs
- Market purchases and sales

1898 & Co. Opinion: The model results are consistent with input assumptions and appear to be reasonable



# **Key Observations - Metrics**

- Five (5) Broad Categories
  - System Reliability
  - System Flexibility
  - Environmental Sustainability
  - Affordability
  - Work Force Impact

1898 & Co. Opinion: The metrics used to evaluate portfolios and scenarios are consistent with typical long term power supply study



## Key Observations – System Reliability (Resource Mix)

**Portfolio Summary** 

- Resource mix and generation mix help assess
   system reliability for any portfolio
- Diverse mix of different technologies help offset any risk associated with any given technology
- Capacity mix P6 and P7 have the most diverse capacity mix, but they also add the maximum resources (10 GW) by 2030. P1, P2 and P4 also have a diverse mix of resources and add the least amount of capacity by 2030. Amongst renewable portfolios, P9 adds the least resources by 2030
- Generation mix P4, P6 and P7 have the most diverse generation mix. However, P4 is still reliant on coal and P6 and P7 add maximum resources by 2030. P1, P2 and P9 have a robust generation mix

#### Action on Existing 2030 Allowed Action on Existing 2030 Allowed Abbreviation Abbreviation Generation Mix **Technologies Generating Fleet** Technologies Generating Fleet Generation Mix Spruce 1 shut down in 2028. Spruce 1 shut down in 2025 P5 (Ren) P1 (Gas) Gas Spruce 2 converted to gas in Renewables Spruce 2 shut down in 2028 2027. Spruce 1 shut down in 2025 Spruce 1 shut down in 2028. Spruce 2 shut down in 2028 P2 (Blend 1) All Spruce 2 converted to gas in P6 (Ren) Renewables All gas units shut down by 2027. 2035. Spruce 1 shut down in 2025 Spruce 1 shut down in 2028. Spruce 2 shut down in 2028. P3 (Ren) Renewables P7 (Ren) Renewables Spruce 2 shut down in 2027. All gas units shut down by 2040. Spruce 1 shut down in 2025 Spruce 2 shut down in 2025, Both Spruce units run on P8 (Ren) P4 (Blend 2) All Renewables coal beyond 2040 and re-opened as gas unit in 2028 Spruce 1 shut down in 2028. Nuclear Geothermal Coal P9 (Ren) Renewables Spruce 2 converted to gas in Gas Gas Toll Wind 2028 Solar Other Storage Energy Efficiency Hydrogen

#### Cumulative Capacity Additions Between 2023 and 2030 (MW)

| Portfolio                                          | P1    | P2      | P3         | P4            | P5     | P6     | P7         | P8    | P9    |
|----------------------------------------------------|-------|---------|------------|---------------|--------|--------|------------|-------|-------|
| Allowed Technology                                 | Gas   | Blend 1 | Renewables | Blend 2       |        |        | Renewables |       |       |
| Combined Cycle (CC) <sup>1</sup>                   | 2,260 | 1,380   | 500        | 1,380         | 500    | 500    | 500        | 500   | 500   |
| Reciprocating Internal<br>Combustion Engine (RICE) | 606   | 808     | N/A        | 202           | N/A    | N/A    | N/A        | N/A   | N/A   |
| Wind <sup>2</sup>                                  | N/A   | 500     | 2,700      | N/A           | 2,700  | 4,000  | 4,000      | 2,100 | 2,300 |
| Solar <sup>3</sup>                                 | 880   | 1,180   | 1,180      | 880           | 1,180  | 1,420  | 1,280      | 1,380 | 1,180 |
| Short-Duration Storage <sup>4</sup>                | 50    | 1,010   | 3,010      | 1,155         | 3,060  | 4,110  | 4,110      | 2,260 | 1,860 |
| Long-Duration Storage <sup>5,6</sup>               | N/A   | 50      | 100        | -             | 100    | 100    | 100        | 100   | 100   |
| Geothermal <sup>6</sup>                            | N/A   | -       | 60         | -             | 25     | 275    | 275        | -     | -     |
| Hydrogen <sup>6</sup>                              | N/A   | -       | 240        | 240           | 240    | 240    | 240        | 240   | 240   |
| Nuclear – Small Modular                            | N/A   | -       | -          | -             | N/A    | N/A    | N/A        | N/A   | N/A   |
| Total New Capacity                                 | 3,796 | 4,928   | 7,790      | 3,857         | 7,805  | 10,645 | 10,505     | 6,580 | 6,180 |
| Spruce 2 Gas Conversion                            | 785   | 785     | Retire     | Retain w/coal | Retire | Retire | Retire     | 785   | 785   |
| Market Purchase 2026 <sup>7</sup>                  | 532   | 102     | 304        | 422           | 893    | 785    | 785        | 1,560 | 304   |
| Market Purchase 2027 <sup>7</sup>                  | N/A   | N/A     | 253        | N/A           | 947    | 20     | 20         | 1,771 | 606   |
| Market Purchase 2028 <sup>7</sup>                  | N/A   | N/A     | 559        | N/A           | 1,185  | 511    | 511        | 599   | 1,562 |
| Market Purchase 2029 <sup>7</sup>                  | N/A   | N/A     | 917        | N/A           | 913    | N/A    | N/A        | 600   | 750   |

Notes: 1) Includes FlexPower Bundle 500 MW 10-year gas tolling contract; 2) Includes both coastal and west wind; 3) Includes FlexPower Bundle solar; 4) Includes FlexPower Bundle storage, and includes 2-hour, 4-hour, and 8-hour storage; 5) 20-hour storage; 6) Selected only in 2030 due to assumed technology availability; 7) Represents bridged capacity purchase for the year at 23% premium to hourly market price.



 $\frown$ 1

### Key Observations – System Flexibility (Market Purchases)

23

- P1 relies least on market purchases in all scenarios except VMA
- Blend portfolios (P2 and P4) generally have lesser reliance on market energy purchases compared to renewable portfolios
- P6 and P7 rely more heavily on energy market purchases to meet load
- Of the renewable portfolios (P5-P9), P9 appears to rely less on market energy purchases.

#### Review of Portfolio Performance under Scenarios and Sensitivities

### 2030 Market Purchases – By Scenario and Portfolio



- Natural gas prices have a significant impact on market purchases:
  - Market purchases are generally lower in the CBE scenario because CPS Energy's natural gas plants are expected to dispatch more, reducing
    purchases from the market. The impact is more muted in P6 and P7 due to the closures of two combined cycle plants by 2030.
  - Conversely, market purchases are generally higher in the VMA scenario where natural gas prices are high. This is despite lower electricity consumption in the scenario. High natural gas prices put gas-heavy portfolios at a disadvantage relative to ERCOT market prices.
- The NZE scenario generally leads to higher market purchases in all scenarios. This is due to lower ERCOT market prices combined with higher electricity consumption resulting from significant electrification growth.



2030 Gross Market Purchases (Annual Total)

# Key Observations – Environmental Sustainability

| CAAP Goals & CPS Energy Carbon |          |           |  |  |  |  |  |  |
|--------------------------------|----------|-----------|--|--|--|--|--|--|
| Intensity Metric               |          |           |  |  |  |  |  |  |
| CAAP Goal CAAP Goal Carbon     |          |           |  |  |  |  |  |  |
| Reduction                      |          | Intensity |  |  |  |  |  |  |
| Year                           | (%)      | (lbs/mwh) |  |  |  |  |  |  |
| 2016*                          | baseline | 920       |  |  |  |  |  |  |
| 2030                           | 41       | 543       |  |  |  |  |  |  |
| <b>2040</b> 71                 |          | 267       |  |  |  |  |  |  |
| 2050                           | 100      | 0         |  |  |  |  |  |  |

\*baseline year for the CoSA CAAP GHG Inventory is 2016

- For 2030, P4 appears not to meet the 2030 CAAP goals
- P6 and P7 have the lowest levels of emissions across all scenarios and exceed 2030 CAAP goals
- P1 is above CAAP goals for the CBE Scenario and is generally close to the CAAP goal for the REF and NZE scenarios. It exceeds CAAP goals under the VMA scenario
- Emissions for other portfolios generally fall in between

#### Review of Portfolio Performance under Scenarios and Sensitivities

### 2030 Carbon Emissions Intensity – By Scenario and Portfolio



- The CBE scenario generally results in the highest emission intensity for all portfolios (except P4). This is because low natural gas prices and no carbon prices lead to higher gas plant capacity factors.
- The VMA scenario generally has the lowest emission intensity across all portfolios (except P4). This is because high natural gas prices lead to lower gas generation and more market purchases. In P4, emission intensity is high because of higher coal generation from the two Spruce units, as coal is more competitive relative to natural gas.

Note: ERCOT-average CO2 emissions intensity in 2030 is projected to be 557 lb/MWh in REF, 650 in CBE, 504 in NZE, and 532 in VMA



**1898**≗

# Key Observations – Affordability

|          | Affordability                     |                                     |                                 |                                |                                |  |  |  |  |
|----------|-----------------------------------|-------------------------------------|---------------------------------|--------------------------------|--------------------------------|--|--|--|--|
|          |                                   | Average                             | e Energy Cost (                 | \$/MWh)                        |                                |  |  |  |  |
|          | Reference<br>Scenario<br>(\$/MWh) | Carbon Based<br>Economy<br>(\$/MWh) | Net Zero<br>Economy<br>(\$/MWh) | Volatile<br>Market<br>(\$/MWh) | Extreme<br>Weather<br>(\$/MWh) |  |  |  |  |
|          | 2023 -2030                        | 2023 -2030                          | 2023 -2030                      | 2023 – 2030                    | 2023 – 2030                    |  |  |  |  |
| P1       | \$58.07                           | \$52.33                             | \$56.89                         | \$59.85                        | \$57.30                        |  |  |  |  |
| P2       | \$60.04                           | \$54.57                             | \$58.54                         | \$62.92                        | \$60.21                        |  |  |  |  |
| P3       | \$60.58                           | \$55.95                             | \$57.71                         | \$63.08                        | \$65.07                        |  |  |  |  |
| P4       | \$59.16                           | \$53.15                             | \$57.51                         | \$60.60                        | \$59.48                        |  |  |  |  |
| P5       | \$60.47                           | \$55.09                             | \$56.57                         | \$61.53                        | \$65.03                        |  |  |  |  |
| P6       | \$65.34                           | \$61.12                             | \$60.85                         | \$68.59                        | \$68.13                        |  |  |  |  |
| P7       | \$65.96                           | \$61.71                             | \$61.40                         | \$69.23                        | \$68.81                        |  |  |  |  |
| P8       | \$60.67                           | \$54.82                             | \$56.17                         | \$62.15                        | \$63.56                        |  |  |  |  |
| P9       | \$58.64                           | \$53.58                             | \$55.94                         | \$59.38 \$61.70                |                                |  |  |  |  |
|          | Legend                            |                                     |                                 |                                |                                |  |  |  |  |
| Less Fav | orable                            |                                     |                                 | Мо                             | re Favorable                   |  |  |  |  |

#### Review of Portfolio Performance under Scenarios and Sensitivities

### Present Value (PV) of Revenue Requirements – All Scenarios + Extreme Weather





- In the short term, gas and carbon prices drive the ranges of revenue requirements. Portfolios with more gas capacity benefit more from low gas prices in CBE. Portfolios with more renewable capacity benefit from the faster decline in renewable costs in NZE.
- Over the long term, the risks to revenue requirements are skewed higher for P6 and P7. This is driven by a slower-than-expected
  decline in renewable costs in VMA, and lower revenues from market sales as ERCOT market prices are suppressed by high
  renewable penetration in NZE. The risks are skewed lower for P1, P2, and P4 as these portfolios benefit from low gas prices in CBE.
- Both P1 and P4 face the highest cost increases in NZE due to the escalating carbon price, but P4 is hedged against high natural gas prices in VMA because it retains coal.



- Average energy costs (2023-2030) is another measure to assess bill impacts and affordability
- P1 has the lowest average energy price range across scenarios and also has the least spread in costs across all scenarios indicating better price protection to customers
- P3 has the lowest energy cost in the CBE scenario, but also has the widest spread across all scenarios
  and extreme weather sensitivity indicating higher price volatility and associated risks
- P6 and P7 generally tend to have higher costs across all scenarios and the extreme weather sensitivity
- Amongst renewable portfolios (P5-P9) P9 tends to have a lower overall cost

# Key Observations – Work Force Impact

- In general, retiring fossil fuel based generating units with renewable energy resources can have impacts on the work force
- Renewable resources like wind and solar projects require less people to operate and maintain
- Renewable resources are likely to be more geographically dispersed
- P1, P2 and P4 will likely have the least impact on CPS Energy jobs due to continued operations of existing units or for adding new gas resources, which are expected to be local resources

#### egrated Scorecard Summary

### Key Observations from Portfolio Metric Results

|               | Workforce Impact                                    |                                                                                                          |  |  |  |  |  |  |  |  |
|---------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|               | CPS Energy Workforce<br>Impact                      | Local Economic Impact                                                                                    |  |  |  |  |  |  |  |  |
|               | # of Impacted<br>CPS Energy Generation<br>Employees | Capital expenditures for<br>new generation capacity<br>built in greater San Antonio<br>area (\$Millions) |  |  |  |  |  |  |  |  |
|               | 2030                                                | 2023 – 2030                                                                                              |  |  |  |  |  |  |  |  |
| 21            | 155                                                 | 2,758                                                                                                    |  |  |  |  |  |  |  |  |
| 22            | 170                                                 | 2,004                                                                                                    |  |  |  |  |  |  |  |  |
| 53            | 345                                                 | 1,310                                                                                                    |  |  |  |  |  |  |  |  |
| ۶4            | 90                                                  | 1,787                                                                                                    |  |  |  |  |  |  |  |  |
| 5             | 355                                                 | 866                                                                                                      |  |  |  |  |  |  |  |  |
| <b>&gt;</b> 6 | 355                                                 | 4,041                                                                                                    |  |  |  |  |  |  |  |  |
| 77            | 355                                                 | 4,041                                                                                                    |  |  |  |  |  |  |  |  |
| 28            | 295                                                 | 548                                                                                                      |  |  |  |  |  |  |  |  |
| -9            | 295                                                 | 548                                                                                                      |  |  |  |  |  |  |  |  |
|               | Note:                                               |                                                                                                          |  |  |  |  |  |  |  |  |

Lighter shade means "more favorable.

### Workforce Impact

### <u>CPS Energy Workforce Impact</u>

- P4 has the lowest impact on CPS Energy jobs, due to continued operations of both Spruce units and fewer capacity retirements by 2030. New gas plants allow CPS Energy to re-deploy employees from retired plants.
- P3, P5, P6, and P7 have the largest impact on CPS Energy jobs due to earlier retirements of CPS Energy-owned power plants.

### Local Economic Impact

- P6 and P7 have the highest capital expenditures in the local area, driven largely by new geothermal capacity.
- P1 and P2 include the most near-term gas additions, which are expected to be constructed in the local region.
- Although P5, P8 and P9 add significant renewable capacity, it is expected that most wind and solar would be sited outside of the greater San Antonio area.



# Key Observations – Scorecard

- Color scheme used to highlight relative portfolio performance for each metric
- Individual portfolio performance for different scenarios not specifically mentioned
- Not aware of assigning weights and scoring of portfolios for individual scenarios
- Classification of risk for all portfolios and scenarios summarized as high, medium and low. However, classification guidelines are not clearly defined

#### ntegrated Scorecard Summary

### Portfolio Metric Results

|                                                                                                                                                                   | System Reliability & Climate<br>Resiliency |                                   |                                                |                                                                                             | Environmental Sustainability                                             |                         |                          | Affordability                                      |                                                      |                                                         | System Flexibility             |                                                     | Workforce Impact                                                                         |                                                        |                                                        |                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------|--------------------------|----------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                   | Diversit<br>y of<br>Generat<br>ion Mix     | Capacity<br>Headroom              | Extrem<br>Exp                                  | e Weather<br>posure                                                                         | Progress Towards City of<br>Goals                                        |                         | SA CAAP                  | Energy Cost (\$/MWh)                               |                                                      | Present Value (PV)<br>Revenue Requirements              |                                | Market<br>Purchases                                 | Dispatchabilit<br>y                                                                      | CPS Energy<br>Workforce<br>Impact                      | Local Economic<br>Impact                               |                                                                                                                   |
|                                                                                                                                                                   | Generati<br>on Mix<br>(MWh)                | Expected<br>Reserve<br>Margin (%) | Rev. Req.<br>Extreme<br>Weather<br>(\$Billion) | % of CPS<br>Energy<br>consumption<br>that is met<br>through<br>ERCOT<br>market<br>purchases | % CO2<br>Intensity<br>Reduction<br>Relative to<br>2016 (Ref<br>Scenario) | Emis<br>Inte<br>(Ib CO) | ssion<br>nsity<br>2/MWh) | % reduction<br>in<br>consumption<br>due to<br>STEP | Reference<br>Scenario<br>Average<br>Cost<br>(\$/MWh) | Range in<br>Cost in <u>all</u><br>Scenarios<br>(\$/MWh) | Ref<br>Scenario<br>(\$Billion) | Range Across <u>all</u><br>Scenarios<br>(\$Billion) | % of CPS<br>Energy<br>consumption<br>that is met<br>through<br>ERCOT market<br>purchases | % of CPS<br>Energy<br>Capacity that is<br>Dispatchable | # of Impacted<br>CPS Energy<br>Generation<br>Employees | Capital<br>expenditures for<br>new generation<br>capacity built in<br>greater San<br>Antonio area<br>(\$Millions) |
|                                                                                                                                                                   | 2030                                       | 2030                              | 2030                                           | 2030                                                                                        | 2030                                                                     | 2030                    | 2040                     | 2030                                               | 2023 -                                               | - 2030                                                  | 2023 –<br>2030                 | 2023 - 2030                                         | 2030                                                                                     | 2030                                                   | 2030                                                   | 2023 – 2030                                                                                                       |
| P1                                                                                                                                                                |                                            | 13.7%                             | \$1.70                                         | 1.0%                                                                                        | 37%                                                                      | 578                     | 547                      | 9.7%                                               | \$58.07                                              | \$52-60                                                 | \$8.58                         | \$7.87-8.58                                         | 1%                                                                                       | 61%                                                    | 155                                                    | \$2,758                                                                                                           |
| P2                                                                                                                                                                | $\bigotimes$                               | 15.7%                             | \$2.04                                         | 3.1%                                                                                        | 44%                                                                      | 518                     | 350                      | 9.7%                                               | \$60.04                                              | \$55-63                                                 | \$8.85                         | \$8.19-8.99                                         | 4%                                                                                       | 57%                                                    | 170                                                    | \$2,004                                                                                                           |
| P3                                                                                                                                                                |                                            | 14.5%                             | \$3.26                                         | 12.8%                                                                                       | 65%                                                                      | 321                     | 161                      | 9.7%                                               | \$60.58                                              | \$56-63                                                 | \$8.90                         | \$8.36-8.98                                         | 13%                                                                                      | 46%                                                    | 345                                                    | \$1,310                                                                                                           |
| P4                                                                                                                                                                |                                            | 15.3%                             | \$2.02                                         | 6.1%                                                                                        | 30%                                                                      | 641                     | 361                      | 9.7%                                               | \$59.16                                              | \$53-61                                                 | \$8.72                         | \$7.99-8.72                                         | 7%                                                                                       | 63%                                                    | 90                                                     | \$1,787                                                                                                           |
| P5                                                                                                                                                                |                                            | 15.0%                             | \$3.28                                         | 13.5%                                                                                       | 65%                                                                      | 325                     | 161                      | 9.7%                                               | \$60.47                                              | \$55-62                                                 | \$8.88                         | \$8.23-8.88                                         | 13%                                                                                      | 46%                                                    | 355                                                    | \$866                                                                                                             |
| P6                                                                                                                                                                |                                            | 13.2%                             | \$3.27                                         | 19.6%                                                                                       | 78%                                                                      | 200                     | 31                       | 9.7%                                               | \$65.34                                              | \$61-69                                                 | \$9.54                         | \$9.07-9.68                                         | 18%                                                                                      | 39%                                                    | 355                                                    | \$4,041                                                                                                           |
| P7                                                                                                                                                                |                                            | 13.1%                             | \$3.34                                         | 19.7%                                                                                       | 78%                                                                      | 202                     | 35                       | 9.7%                                               | \$65.96                                              | \$61-69                                                 | \$9.63                         | \$9.14-9.76                                         | 18%                                                                                      | 39%                                                    | 355                                                    | \$4,041                                                                                                           |
| P8                                                                                                                                                                |                                            | 15.4%                             | \$2.79                                         | 11.2%                                                                                       | 59%                                                                      | 378                     | 160                      | 9.7%                                               | \$60.67                                              | \$55-62                                                 | \$8.92                         | \$8.20-8.92                                         | 11%                                                                                      | 48%                                                    | 295                                                    | \$548                                                                                                             |
| <b>P</b> 9                                                                                                                                                        |                                            | 14.6%                             | \$2.69                                         | 7.9%                                                                                        | 60%                                                                      | 371                     | 160                      | 9.7%                                               | \$58.64                                              | \$54-59                                                 | \$8.65                         | \$8.04-8.65                                         | 9%                                                                                       | 46%                                                    | 295                                                    | \$548                                                                                                             |
| • Nuclear     • Geothermal     • Coal     • Gas       45     • Gas Toll     • Wind     • Solar     • Other       • Storage     • Hydrogen     • Energy Efficiency |                                            |                                   |                                                |                                                                                             |                                                                          |                         |                          | Legend Legend Associates                           |                                                      |                                                         |                                |                                                     |                                                                                          | s River<br>ciates                                      |                                                        |                                                                                                                   |

1898 & Co. Opinion: The metrics used to evaluate portfolios and scenarios are consistent with typical long term power supply study

## **Key Observations**

- The study approach seems reasonable
- The assumptions used in the analysis appear reasonable
- The capacity values of renewable resources appear reasonable
- The results of the scenario and portfolio analysis looks reasonable
- No single portfolio performs the best under all scenarios and sensitivities implying that there is a tradeoff between risk and cost and an optimum portfolio needs to be decided by weighing in all factors
- Replacing existing resources with new resources has a cost impact. This shows up especially in P6, where all gas resources are shut down by 2035.
- P1 and P2 perform better across different scenarios and sensitivities compared to P6 and P7 and other renewable portfolios which indicate that CPS Energy gas and coal resources provide good value for CPS Energy portfolio
- Renewable portfolios have a lower emission profile compared to P1 and blend portfolios but are more costly
- Amongst renewable portfolios, P9 costs appear to be less volatile and hence has a lower risk profile



## **Recommended Portfolio**

- No single portfolio performs the best under all scenarios and sensitivities implying that there is a tradeoff between risk and cost and an optimum portfolio needs to be decided by weighing in all factors
- Amongst all portfolios P1, P2, P4 and P9 generally appear to perform better compared to other portfolios across the five broad categories. Amongst these, P4 continues to rely on coal throughout the study period
- Based on the above 1898 & Co. recommends RAC members to consider P1, P2 and P9 for possible options for their recommendation



### Next Steps and Additional Analyses

- This study handled solar generation as is typically done for planning studies. Generation profiles have been developed based on historical trends and corelated weather patterns. Generation profiles have also been modified for the extreme weather sensitivity. However, future renewable generation remains uncertain. It could be a good practice in the future to build in renewable generation variability over time that include more low generation event occurrences with longer durations based on historical information
- The assumptions in the extreme weather sensitivity case addresses the variation in renewable energy generation and capacity factors for 2030 only but in addition to that, the other critical risk around renewable generation is number of occurrences and occurrence durations for low generation events, especially for wind.
- Assess the impact of recent capital cost inflation trends in the assumptions for new technologies, something that may not have been possible given the timing of the study